Navigation Links
Harvard's Wyss Institute develops technology to produce sugar from photosynthetic bacteria
Date:6/28/2010

Researchers from the Wyss Institute for Biologically Inspired Engineering at Harvard and Harvard Medical School have engineered photosynthetic bacteria to produce simple sugars and lactic acid. This innovation could lead to new, environmentally friendly methods for producing commodity chemicals in bulk. Their research findings appear in the June issue of Applied and Environmental Microbiology.

This photosynthetic factory could also reduce the carbon dioxide emissions associated with transporting sugar globally from producing countries; lead to greater availability of biodegradable plastics; and allow capture of harmful CO2 emissions from power plants and industrial facilities.

In addition to its positive environmental impact, the technology offers potential economic advantages. Because the production methods use photosynthesis--the process by which living things are assembled using only CO2 and sunlight--the cost of making sugars, lactic acid, and other compounds would be significantly lower than traditional methods.

"What we're doing is using genetic engineering to get organisms to act the way we want them toin this case producing food additives," said Wyss Institute senior staff scientist Jeffrey Way, Ph.D. "These discoveries have significant practical implications in moving toward a green economy."

In addition to Dr. Way, researchers on this effort include Wyss Institute core faculty member Professor Pamela Silver, Ph.D., also of Harvard Medical School; and Henrike Niederholtmeyer, Bernd T. Wolfstadter, and David Savage, Ph.D., all of Harvard Medical School.

Sugar is primarily produced from sugar cane, which grows only in tropical and subtropical climates. By enabling production almost anywhere in the world, this living cellular manufacturing plant could greatly reduce the cost and emissions associated with transporting millions of tons of sugar to consumers every year.

It could also expand the availability of biodegradable plastics by reducing the cost of lactic acid, a key building block in their production.

The current work by Dr. Way and Dr. Silver's team is the latest innovation in a wide-ranging program in which the Wyss Institute is working with various partner institutions to develop environmentally sustainable ways to produce biofuels, hydrogen, and other high value chemicals and food additives.

"Our mission at the Wyss Institute is to use Nature's design principles to create solutions in medicine, manufacturing, energy, and architecture that will lead to a more sustainable world," said Don Ingber, Ph.D., M.D., Founding Director of the Wyss Institute. "This work is an important step in that direction."


'/>"/>

Contact: Mary Tolikas
mary.tolikas@wyss.harvard.edu
Wyss Institute for Biologically Inspired Engineering at Harvard
Source:Eurekalert

Related biology news :

1. Left or right? Early clues to soccer penalty kicks revealed at Rensselaer Polytechnic Institute
2. Rensselaer Polytechnic Institute professor Peter M. Tessier named Pew Scholar
3. Gladstone and Institute for Systems Biology collaborate on Huntingtons disease
4. National Eye Institute hosts Translational Research and Vision Symposium
5. University of Washington institute to get as much as $100 million to study atmosphere, ocean
6. Norwegian Institute of Public Health receives $100,000 Grand Challenges Explorations grant
7. La Jolla Institute scientist leads team which discovers important new player in diabetes onset
8. Harvards Wyss Institute uses natures design principles to create specialized nanofabrics
9. Rensselaer Polytechnic Institute professor Patrick Underhill receives NSF CAREER award
10. NOAA selects University of Miami to lead major southeastern US cooperative institute
11. Oklahoma Blood Institute to Leverage BIO-key(R) Breakthrough TruDonor(TM) Fingerprint Donor Identification
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... Research and Markets has announced the addition of the ... ... to grow at a CAGR of 30.37% during the period 2017-2021. ... been prepared based on an in-depth market analysis with inputs from ... prospects over the coming years. The report also includes a discussion ...
(Date:4/6/2017)... , April 6, 2017 ... RFID, ANPR, Document Readers, by End-Use (Transportation & Logistics, ... Facility, Oil, Gas & Fossil Generation Facility, Nuclear Power), ... Educational, Other) Are you looking for a ... sector? ...
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... anticipated to expand at a CAGR of 25.76% during ... diseases is the primary factor for the growth of ... report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global ... product, technology, application, and geography. The stem cell market ...
Breaking Biology News(10 mins):
(Date:7/18/2017)... ... July 18, 2017 , ... Recently recognized by CIO Magazine ... the migration of its flagship cloud-based product Planet Life Cycle – a robust ... management system that merges strategic and financial planning with execution. The solution is ...
(Date:7/17/2017)... ... 17, 2017 , ... OHAUS Corporation, a leading worldwide manufacturer ... new line of Heavy-Duty Orbital Shakers today. , Eight New Models Available, OHAUS ... applications. These shakers are ideal for load capacities from 35 to 150 ...
(Date:7/17/2017)... Iowa (PRWEB) , ... July 17, 2017 , ... ... component of its long-standing innovation strategy. A website (openinnovation.pioneer.com) dedicated to ... five strategic areas – trait discovery, plant breeding, enabling technologies, biologicals and digital ...
(Date:7/14/2017)... (PRWEB) , ... July 14, 2017 , ... ... conscious EMS company . Sonic Manufacturing Technologies has installed a solar system on ... in a three-year period,” the President of Sonic, Kenneth Raab stated. The company’s ...
Breaking Biology Technology: