Navigation Links
Harvard scientists control cells following transplantation, from the inside out

Harvard stem cells scientists at Brigham and Women's Hospital and MIT can now engineer cells that are more easily controlled following transplantation, potentially making cell therapies, hundreds of which are currently in clinical trials across the United States, more functional and efficient.

Associate Professor Jeffrey Karp, PhD, and James Ankrum, PhD, demonstrate in this month's issue of Nature Protocols how to load cells with microparticles that provide the cells cues for how they should behave over the course of days or weeks as the particles degrade.

"Regardless of where the cell is in the body, it's going to be receiving its cues from the inside," said Karp, a Harvard Stem Cell Institute Principal Faculty member at Brigham and Women's Hospital. "This is a completely different strategy than the current method of placing cells onto drug-doped microcarriers or scaffolds, which is limiting because the cells need to remain in close proximity to those materials in order to function. Also these types of materials are too large to be infused into the bloodstream."

Cells are relatively simple to control in a Petri dish. The right molecules or drugs, if internalized by a cell, can change its behavior; such as inducing a stem cell to differentiate or correcting a defect in a cancer cell. This level of control is lost after transplantation as cells typically behave according to environmental cues in the recipient's body. Karp's strategy, dubbed particle engineering, corrects this problem by turning cells into pre-programmable units. The internalized particles stably remain inside the transplanted cell and tell it exactly how to act, whether the cell is needed to release anti-inflammatory factors or regenerate lost tissue.

"Once those particles are internalized into the cells, which can take on the order of 6-24 hours, we can deliver the transplant immediately or even cryopreserve the cells," Karp said. "When the cells are thawed at the patient's bedside, they can be administered and the agents will start to be released inside the cells to control differentiation, immune modulation or matrix production, for example."

It could take more than a decade for this type of cell therapy to be a common medical practice, but to speed up the pace of research, Karp published the Nature Protocols study to encourage others in the scientific community to apply the technique to their fields. The paper shows the range of different cell types that can be particle engineered, including stem cells, immune cells, and pancreatic cells.

"With this versatile platform, which leveraged Harvard and MIT experts in drug delivery, cell engineering, and biology, we've demonstrated the ability to track cells in the body, control stem cell differentiation, and even change the way cells interact with immune cells," said Ankrum, a former graduate student in Karp's laboratory. "We're excited to see what applications other researchers will imagine using this platform."


Contact: Joseph Caputo
Harvard University

Related biology news :

1. Harvards Wyss Institute to develop smart suit that improves soldiers physical endurance
2. Got to go? Harvard scientists figure out how you know
3. Renewed Harvard-BASF initiative to advance functional materials
4. Harvards Wyss Institute and Sony DADC announce collaboration on Organs-on-Chips
5. Harvard and USC scientists show how DHA resolves inflammation
6. Harvard Stem Cell researchers create cells that line blood vessels
7. "GenoVive is changing the face of personalized health by continuing research efforts with Harvard."
8. Wyss Institute at Harvard University announces election of 2 faculty to Natl Academy of Inventors
9. Harvard study shows sprawl threatens water quality, climate protection, and land conservation gains
10. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
11. Queens scientists seek vaccine for Pseudomonas infection
Post Your Comments:
Related Image:
Harvard scientists control cells following transplantation, from the inside out
(Date:10/2/2015)... , Oct. 02 2015 ... the "Enforcing the Law Using Biometrics" ... ) has announced the addition of the ... their offering. --> Research and Markets ... the "Enforcing the Law Using Biometrics" ...
(Date:9/30/2015)... BEACH GARDENS, Fla. , Sept. 30, 2015 /PRNewswire/ ... earlier this month issued another key ruling in favor ... (ITC,s) determination that Korean fingerprint scanner company Suprema and ... Tariff Act of 1930, a trade provision that declares ... with import trade, by infringing two of Crossmatch,s patents, ...
(Date:9/29/2015)... 29, 2015  iDAvatars is excited to be named one ... to market. The official announcement was recently made at an ... in San Francisco , where iDAvatars presented ... IBM Watson. "It is both an honor and ... to bring to market the cognitive power of IBM Watson ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... ... October 13, 2015 , ... DunAn ... (USHX) product, launches today on the Android smartphone platform. Southern Case Arts, producers ... remote control and monitoring capability for the first time to the market at ...
(Date:10/13/2015)... ... October 13, 2015 , ... ... culture, and assessment of organotypic 3D cell culture models, has launched a ... screening in their patent-pending 3D InSightâ„¢ Human Liver Microtissues. The service streamlines ...
(Date:10/13/2015)... October 13, 2015 " Microbiology Culture ... 2015 - 2023 " , the global microbiology ... anticipated to reach US$7.59 bn by 2023, expanding at a CAGR ... --> " Microbiology Culture Market - Global Industry Analysis, ... , the global microbiology culture market was valued at ...
(Date:10/13/2015)... 13, 2015      Q BioMed ... has entered into a strategic relationship with Wombat Capital, ... Paris, France based strategic and ... --> This collaborative arrangement gives Q BioMed and ... team as well as long established pharmaceutical industry relationships. ...
Breaking Biology Technology: