Navigation Links
Hard-to-find fish reveals shared developmental toolbox of evolution

A SCUBA expedition in Australia and New Zealand to find the rare embryos of an unusual shark cousin enabled American and British researchers to confirm new developmental similarities between fish and mammals.

Elephant fish, a relative of sharks, utilize the same genetic process for forming skeletal gill covers that lizards and mammals use to form fingers and toes, researchers at the University of Chicago and the University of Cambridge found. The precise timing of when and where that gene is expressed during embryonic development produces dramatic anatomical differences between elephant fish and their close relatives, the dogfish.

The study, published online January 10th by the Proceedings of the National Academy of Sciences, confirms that organisms separated by hundreds of millions of years of evolution share similar genetic programs for body formation.

"The research highlights how evolution is extremely efficient, taking advantage of preexisting mechanisms, rather than inventing new ones," said Andrew Gillis, PhD, at the University of Cambridge and lead author. "By simply tinkering with the timing of when or where a gene is expressed in an embryo, you can get very different anatomical outcomes in adults."

"You have a common nail that's used for many different pieces of furniture," said Neil Shubin, PhD, Robert R. Bensley Professor of Organismal Biology & Anatomy at the University of Chicago and senior author of the paper. "This esoteric fish with this esoteric anatomical system is showing us something very fundamental about the evolutionary tree: that there's a common process at work among disparate types of organisms."

The holocephalans are a family of fish that share a cartilage-based skeleton with better known animals such as sharks and rays. Another shared feature is the presence of appendages called branchial rays, structures that grow outward from the skeleton's central gill arches. While sharks form several sets of these rays, holocephalans only grow a single set near their head, which eventually supports covers for their gills.

Evolutionary biologists looking for the genetic mechanisms behind these anatomical differences have long sought to study the embryos of holocephalans and sharks. But the experiment was easier said than done, because of the inconvenient location where holocephalan eggs are laid: at the bottom of the ocean floor.

Undeterred, Dr. Gillis, now a postdoctoral researcher at Cambridge, used accounts from local fishermen and fishery biologists to find potentially accessible areas of elephant fish breeding in Australia and New Zealand. By conducting SCUBA surveys of those regions, Gillis and colleagues were able to collect a precious supply of elephant fish embryos to bring back to laboratories in Chicago and Cambridge for further experimental analysis.

"Diving for elephant fish eggs was not always a pleasure trip," says Dr Gillis. "Unfortunately, elephant fish like to lay their eggs in cold, muddy, shark-infested bays, so we spent months seeking out sites like this in southeastern Australia and New Zealand. When you finally find a few eggs in the muck, it feels like winning the lottery."

The embryos of elephant fish and dogfish, a kind of shark, were stained at different ages for the sonic hedgehog (Shh) gene, a factor first isolated in the late 1970's in fruit flies for its ability to control body development. At early stages of development, researchers detected Shh expression at the hyoid arch and four of the gill arches in both species.

But within a few weeks, Shh is only expressed in the hyoid arch of the elephant fish embryo, while the dogfish embryo continues to express the gene along all five arches. Therefore, the different patterns of Shh expression match the eventual anatomical differences in the growth of branchial rays.

"It's a real feat because we had a limited number of eggs, and with that limited number, each specimen had to be a home run," Shubin said. "You had to get the techniques to work. Andrew was kind of swinging for the fences; not only was he hoping to collect rare embryos, but also to get them to work in the lab, and that was really impressive."

The data demonstrate how a small change in the timing of gene expression can produce dramatically different anatomical outcomes in closely related species. The specific dynamics in elephant fish who initially carry the potential for five sets of branchial rays, before reducing the number to one is parallel to genetic programs in other, vastly different species, such as lizards who have reduced numbers of fingers on their limbs.

"It's basically showing that the limb story is part of a much more general narrative, which is the story of outgrowths," said Shubin, who led the team that discovered the important transitional fossil Tiktaalik fossil in 2008. "There's a common development toolkit for all the outgrowths that we know in the body; they're all versions of one another in a developmental sense."


Contact: Robert Mitchum
University of Chicago Medical Center

Related biology news :

1. A pesky bacterial slime reveals its survival secrets
2. Catfish study reveals multiplicity of species
3. Viral evasion gene reveals new targets for eliminating chronic infections
4. Large-scale study reveals major decline in bumble bees in the US
5. New research reveals unexpected biological pathway in glaucoma
6. Despite damage, membrane protein structure can be seen using new X-ray technology, study reveals
7. Genome of barley disease reveals surprises
8. New research reveals details of microbes extraordinary maintenance and repair system
9. Northern wildfires threaten runaway climate change, study reveals
10. Study reveals new possibility of reversing damage caused by MS
11. Pioneering study reveals UK biodiversity hotspot
Post Your Comments:
(Date:11/17/2015)... SOUTH EASTON, Mass. , Nov. 17, 2015 /PRNewswire/ ... "Company"), a leader in the development and sale of ... to the worldwide life sciences industry, today announced it ... closing of its $5 million Private Placement (the "Offering"), ... Offering to $4,025,000.  One or more additional closings are ...
(Date:11/12/2015)...  A golden retriever that stayed healthy despite having ... provided a new lead for treating this muscle-wasting disorder, ... of MIT and Harvard and the University of São ... Cell, pinpoints a protective gene that boosts ... The Boston Children,s lab of Lou Kunkel , ...
(Date:11/12/2015)... --  Growing need for low-cost, easy to use, ... the way for use of biochemical sensors for ... clinical, agricultural, environmental, food and defense applications. Presently, ... applications, however, their adoption is increasing in agricultural, ... on improving product quality and growing need to ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... International ... and one of the premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. ... 2015, where ISPE hosted the largest number of attendees in more than a ...
(Date:11/24/2015)... RALEIGH, N.C. , Nov. 24, 2015  Clintrax Global, Inc., ... Raleigh, North Carolina , today announced that the company has ... earnings represented a 391% quarter on quarter growth posted for Q3 ... Kingdom and Mexico , with the ... place in December 2015. --> United Kingdom ...
(Date:11/24/2015)... ... ... This fall, global software solutions leader SAP and AdVenture Capital brought together dozens ... BIG ideas to improve health and wellness in their schools. , Now, the top ... of SAP's Teen Innovator, an all-expenses paid trip to Super Bowl 50, and an ...
(Date:11/24/2015)... SHPG ) announced today that Jeff Poulton , ... Annual Healthcare Conference in New York City ... (1:30 p.m. GMT). --> SHPG ) announced today that ... Piper Jaffray 27 th Annual Healthcare Conference in ... at 8:30 a.m. EST (1:30 p.m. GMT). --> Shire ...
Breaking Biology Technology: