Navigation Links
HIV makes protein that may help virus's resurgence
Date:2/25/2011

New research enhances the current knowledge of how human immunodeficiency virus type-1 (HIV-1), which causes AIDS, controls the cell cycle of cells that it infects. The new findings may shed light on how the virus reactivates after entering a dormant state, called latency.

"As we better understand the biological events that revive HIV from latency, we hope to devise ways to eventually intervene in this process with better treatments for people with HIV infection," said study leader Terri H. Finkel, M.D., Ph.D., chief of Rheumatology at The Children's Hospital of Philadelphia.

Finkel is the senior author of a study published in the Jan. 27 issue of the journal Blood. The first author, also from Children's Hospital, is Jiangfang Wang, M.D., Ph.D.

Viral latency is one of the persistent problems in treating HIV infection. Current combinations of anti-HIV drugs can reduce HIV to undetectable levels, but the virus hides in latently infected cells in a sort of hibernation. If a patient stops taking medication, or is weakened by a different infection, HIV can make a resurgence out of its viral reservoirs, often becoming resistant to previously effective drugs.

The current study focused on a protein, Vif (for viral infectivity factor), that HIV-1 produces. Finkel and colleagues previously discovered that Vif causes HIV-infected cells to stop growing at one phase of the cell cycle, the G2 phase. The study team has now found that Vif also acts at an earlier stage in the cell cycle, driving cells out of the G1 phase and into the more active S phase.

This activity may be important, said Finkel, because G1 is a resting phase, and a biological interaction that "wakes up" a latent infected cell may reactivate the infection. Other viruses that have a latent infectious state, such as the herpes virus and the Epstein-Barr virus, also express proteins that drive a transition from G1 to S phase. "By regulating the cell cycle, viruses control their infectivity," said Finkel.

The researchers carried out their work in HeLa cells, a human cell line long used in cell studies, as well as in human T cells, immune cells found in the blood. They identified two proteins, Brd4 and Cdk9, which interact with Vif. This interaction was a new discovery, although the proteins were already known to regulate the progression of the cell cycle.

Identifying Vif's cellular partners may also implicate them as potential targets for therapy. "If we can interrupt the activity of Brd4 or Cdk9, we may be able to prevent latent infection from becoming active," said Finkel. "Alternatively, by harnessing Brd4 or Cdk9, we may be able to drive cells out of latency and make the virus susceptible to anti-HIV drugs." She added that early preclinical testing of inhibitors is getting under way for other conditions, but cautioned that it is too early to foresee whether, or how soon, her research findings will lead to clinical treatments for HIV.


'/>"/>

Contact: John Ascenzi
ascenzi@email.chop.edu
267-426-6055
Children's Hospital of Philadelphia
Source:Eurekalert

Related biology news :

1. Trustee makes donation to start new solar energy research center at Rensselaer
2. What makes an axon an axon?
3. Feed a cold, feed a fever: Research shows calorie cut makes it harder to fight flu
4. Fly guy makes memory breakthrough
5. Our unconscious brain makes the best decisions possible
6. Biophysical Reviews makes debut in 2009
7. Tree lizard’s quick release escape system makes jumpers turn somersaults
8. Rett Syndrome Research Trust advisor makes significant discovery
9. Peptides-on-demand: McGill researchers radical new green chemistry makes the impossible possible
10. Mount Sinai Hospital researcher makes stem cell breakthrough
11. Red wine vs. white? It makes no difference when it comes to breast-cancer risk
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/23/2017)... N.Y. , Aug. 23, 2017  The general public,s help is ... human microbiome—the bacteria that live in and on the human body –and ... The ... in the human microbiome, starting with the gut. The project's goal is ... disease. Photo credit: IBM ...
(Date:6/23/2017)... ITHACA, N.Y. , June 23, 2017 ... a leader in dairy research, today announced a new ... help reduce the chances that the global milk supply ... this dairy project, Cornell University has become the newest ... Food Supply Chain, a food safety initiative that includes ...
(Date:5/16/2017)... DALLAS , May 16, 2017   ... for health organizations, and MD EMR Systems ... certified development partner for GE, have established a ... Patient Portal product and the GE Centricity™ products, ... Centricity EMR. These new integrations ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... 2017 , ... For the second time in three years, ... Award. Representatives of the FirstHand program travelled to Washington, D.C. Tuesday, October 10th, ... mission is to change the trajectory of STEM education in America by dramatically ...
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings announced ... by which its ProCell stem cell therapy prevents ... ischemia.  The Company, demonstrated that treatment with ProCell ... limbs saved as compared to standard bone marrow ... HGF resulted in reduction of therapeutic effect.  ...
(Date:10/9/2017)... ... 2017 , ... The Giving Tree Wellness Center announces the ... of consumers who are incorporating medical marijuana into their wellness and health regimens. ... operators of two successful Valley dispensaries, The Giving Tree’s two founders, Lilach Mazor ...
Breaking Biology Technology: