Navigation Links
Growing without cell division

CHAPEL HILL, N.C. - An international team of scientists, including biologists from the University of North Carolina at Chapel Hill, may have pinpointed for the first time the mechanism responsible for cell polyploidy, a state in which cells contain more than 2 paired sets of chromosomes.

When it comes to human chromosomes and the genes they carry, our tissue cells prefer matched pairs. Bundled within the nucleus of our cells are 46 chromosomes, one set of 23 inherited from each of our parents. Thus, we are known from a cellular standpoint as "diploid" creatures.

But a cellular chromosome situation common in plants and in many insects is polyploidy, in which there are more sometimes a lot more than two sets of chromosomes. Here, growth occurs through an increase in cell size versus an increase in cell number via cell division (mitosis). This allows more DNA to be crammed into the cell nucleus.

Polyploidy also appears in some tissues of otherwise diploid animals, including people for example, in specialized organ tissue such as muscle, placenta, and liver. These biologically highly active tissues also produce large polyploid cells.

An intriguing slice of discovery science led by geneticist Bruce Edgar, PhD of the University of Heidelberg, Germany, was published on-line Sunday, Oct 30, 2011 in the journal Nature. The research team may have pinpointed for the first time the regulatory mechanism responsible for cell polyploidy.

Study co-author Robert J. Duronio, PhD, professor of biology and genetics at UNC and a member of the UNC Lineberger Comprehensive Cancer Center said, "Many organisms achieve growth by increasing cell size rather than cell number." He pointed out that many cells of fruit flies (Drosophila), for example, enter a specialized cell cycle known as the endocycle, which results in polyploidy. Here mitosis is bypassed and the cell replicates its DNA without undergoing mitosis.

"We mathematically modeled the behavior of molecules known to control this special type of cell cycle and the progression to polyploidy. We then made certain predictions about how these molecules were regulated during the endocycle that we tested in fruit flies."

Duronio said the study demonstrated that genes turned on and off in a cyclical manner was important for cells to continue endocycling and become polyploid. "We showed that one particular perturbation, or mutation, of this mechanism blocked the ability of cells to do that."

The UNC researcher said further research will determine if the findings " take us one step closer to being able manipulate cells becoming polyploid. And that might be important for, say, liver regeneration or liver diseases, where it's thought that polyploidy in liver cells may be important for liver function, either for liver detoxification or other aspects of liver biology."


Contact: Les Lang
University of North Carolina School of Medicine

Related biology news :

1. Acinetobacter baumannii found growing in nearly half of infected patient rooms
2. Growing something out of nothing
3. New method of growing high-quality graphene promising for next-gen technology
4. Genencor promotes biobased economy to address challenges of fast-growing world population
5. Rapid evolution within single crop-growing season increases insect pest numbers
6. Regrowing blood vessels with a potent molecule
7. Oceans harmful low-oxygen zones growing, are sensitive to small changes in climate
8. Growing seal population threatens small-scale fishing
9. Online nutrition courses: Fad or growing trend?
10. Stink bug experts gather in Pennsylvania to address growing problem
11. Pollutants in aquifers may threaten future of Mexicos fast-growing Riviera Maya
Post Your Comments:
Related Image:
Growing without cell division
(Date:10/27/2015)... 27, 2015 Munich, Germany ... Mapping technology (ASGM) automatically maps data from mobile eye ... , so that they can be quantitatively analyzed ... Munich, Germany , October 28-29, 2015. SMI,s ... from mobile eye tracking videos created with SMI,s ...
(Date:10/26/2015)... PUNE, India , October 26, ... --> --> ... Forecasts 2015 to 2021 as well ... Analysis 2015-2019 research reports to its ... . ...
(Date:10/26/2015)... 2015  Delta ID Inc., a company focused on ... PC devices, announced its ActiveIRIS® technology powers the iris ... launched by NTT DOCOMO, INC in Japan ... smartphone to include iris recognition technology, after a very ... in May 2015, world,s first smartphone to have this ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 25, 2015 The Global ... a professional and in-depth study on the current ... (Logo: ) , The ... including definitions, classifications, applications and industry chain structure. ... international markets including development trends, competitive landscape analysis, ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... The United ... recipient of the 2016 USGA Green Section Award. Presented annually since 1961, the USGA ... his or her work with turfgrass. , Clarke, of Iselin, N.J., is ...
(Date:11/24/2015)... 24, 2015 /CNW/ - iCo Therapeutics ("iCo" or "the ... results for the quarter ended September 30, 2015. ... dollars and presented under International Financial Reporting Standards ... ," said Andrew Rae , President & ... are not only value enriching for this clinical ...
(Date:11/24/2015)... Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... on behalf of the Toronto Stock Exchange, confirms that ... are no corporate developments that would cause the recent ... --> --> About Aeterna Zentaris Inc. ... --> Aeterna Zentaris is a specialty biopharmaceutical ...
Breaking Biology Technology: