Navigation Links
Growing brain is particularly flexible
Date:6/22/2010

Science has long puzzled over why a baby's brain is particularly flexible and why it easily changes. Is it because babies have to learn a lot? A group of researchers from the Bernstein Network Computational Neuroscience, the Max Planck Institute for Dynamics and Self-Organization in Gttingen, the Schiller University in Jena and Princeton University (USA) have now put forward a new explanation: Maybe it is because the brain still has to grow. Using a combination of experiments, mathematical models and computer simulations they showed that neuronal connections in the visual cortex of cats are restructured during the growth phase and that this restructuring can be explained by self-organisational processes. The study was headed by Matthias Kaschube, former researcher at the Max Planck Institute for Dynamics and Self-Organization and now at Princeton University (USA). (PNAS, published online June 21, 2010)

The brain is continuously changing. Neuronal structures are not hard-wired, but are modified with every learning step and every experience. Certain areas of the brain of a newborn baby are particularly flexible, however. In animal experiments, the development of the visual cortex can be strongly influenced in the first months of life, for example, by different visual stimuli.

Nerve cells in the visual cortex of fully-grown animals divide up the processing of information from the eyes: Some "see" only the left eye, others only the right. Cells of right or left specialisation each lie close to one another in small groups, called columns. The researchers showed that during growth, these structures are not simply inflated columns do not become larger but their number increases. Neither do new columns form from new nerve cells. The number of nerve cells remains almost unchanged, a large part of the growth of the visual cortex can be attributed to an increase in the number of non-neuronal cells. These changes can be explained by the fact that existing cells change their preference for the right or the left eye. In addition, another of the researchers' observations also points to such a restructuring: The arrangement of the columns changes. While the pattern initially looks stripy, these stripes dissolve in time and the pattern becomes more irregular.

"This is an enormous achievement by the brain undertaking such a restructuring while continuing to function," says Wolfgang Keil, scientist at the Max Planck Institute for Dynamics and Self-Organization Gttingen and first author of the study. "There is no engineer behind this conducting the planning, the process must generate itself." The researchers used mathematical models and computer simulations to investigate how the brain could proceed to achieve this restructuring. On the one hand, the brain tries to keep the neighbourhood relations in the visual cortex as uniform as possible. On the other, the development of the visual cortex is determined by the visual process itself cells which have once been stimulated more strongly by the left or right eye try to maintain this particular calling. The researchers' model explains the formation of columns by taking both these tendencies into account. The scientists showed that when the tissue grows and the size of the columns is kept constant, the columns in the computer model change exactly as they had observed in their experimental studies on the visual cortex of the cat: The stripes dissolve into a zigzag pattern and thus become more irregular. In this way, the researchers provide a mathematical basis which realistically describes how the visual cortex could restructure during the growth phase.


'/>"/>

Contact: Wolfgang Keil
wolfgang@nld.ds.mpg.de
49-055-151-76551
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Bigpoint Adds Kongregate to Growing List of Content Distribution Partners
2. Moffitt Cancer Center: Growing interest in prognostic test for non-small cell lung cancer
3. Breakthrough reveals blood vessel cells are key to growing unlimited amounts of adult stem cells
4. Ecologists discover forests are growing faster
5. Growing cartilage -- no easy task
6. Northern forests do not benefit from lengthening growing season
7. Marine aquaculture could feed growing world population
8. Growing cartilage from stem cells
9. Growing greener greens
10. Strategy outlined for growing bioenergy while protecting wildlife
11. Air pollutants from abroad a growing concern, says new report
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Growing brain is particularly flexible
(Date:6/27/2016)... Research and Markets has announced the addition ... to their offering. The report ... to grow at a CAGR of 12.28% during the period 2016-2020. ... in-depth market analysis with inputs from industry experts. The report covers ... The report also includes a discussion of the key vendors operating ...
(Date:6/22/2016)... BETHESDA, Md. , June 22, 2016  The American ... by Trade Show Executive Magazine as one of ... Summit on May 25-27 at the Bellagio in ... based on the highest percentage of growth in each of ... number of exhibiting companies and number of attendees. The 2015 ...
(Date:6/22/2016)... 22, 2016   Acuant , the ... solutions, has partnered with RightCrowd ® ... Visitor Management, Self-Service Kiosks and Continuous Workforce ... add functional enhancements to existing physical access ... venues with an automated ID verification and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Alex,s Lemonade Stand Foundation (ALSF), a leading ... open a state-of-the-art bioinformatics lab, using ,big data, to ... comes as Liz Scott , co-executive director of ... Summit in Washington, D.C. , hosted ... and advocate of pediatric cancer research and awareness. ...
(Date:6/27/2016)... , June 27, 2016  Global demand for ... percent through 2020 to $7.2 billion.  This market ... beverages, cleaning products, biofuel production, animal feed, and ... diagnostics, and biocatalysts). Food and beverages will remain ... by increasing consumption of products containing enzymes in ...
(Date:6/27/2016)... 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ("Biorem" or ... its major shareholders, Clean Technology Fund I, LP and ... based venture capital funds which together hold ... a fully diluted, as converted basis), that they have ... entire equity holdings in Biorem to TUS Holdings Co. ...
(Date:6/27/2016)... DIEGO , June 27, 2016  Sequenom, Inc. ... committed to enabling healthier lives through the development of ... Court of the United States ... courts that the claims of Sequenom,s U.S. Patent No. ... patent eligibility criteria established by the Supreme Court,s Mayo ...
Breaking Biology Technology: