Navigation Links
Growing brain is particularly flexible
Date:6/22/2010

Science has long puzzled over why a baby's brain is particularly flexible and why it easily changes. Is it because babies have to learn a lot? A group of researchers from the Bernstein Network Computational Neuroscience, the Max Planck Institute for Dynamics and Self-Organization in Gttingen, the Schiller University in Jena and Princeton University (USA) have now put forward a new explanation: Maybe it is because the brain still has to grow. Using a combination of experiments, mathematical models and computer simulations they showed that neuronal connections in the visual cortex of cats are restructured during the growth phase and that this restructuring can be explained by self-organisational processes. The study was headed by Matthias Kaschube, former researcher at the Max Planck Institute for Dynamics and Self-Organization and now at Princeton University (USA). (PNAS, published online June 21, 2010)

The brain is continuously changing. Neuronal structures are not hard-wired, but are modified with every learning step and every experience. Certain areas of the brain of a newborn baby are particularly flexible, however. In animal experiments, the development of the visual cortex can be strongly influenced in the first months of life, for example, by different visual stimuli.

Nerve cells in the visual cortex of fully-grown animals divide up the processing of information from the eyes: Some "see" only the left eye, others only the right. Cells of right or left specialisation each lie close to one another in small groups, called columns. The researchers showed that during growth, these structures are not simply inflated columns do not become larger but their number increases. Neither do new columns form from new nerve cells. The number of nerve cells remains almost unchanged, a large part of the growth of the visual cortex can be attributed to an increase in the number of non-neuronal cells. These changes can be explained by the fact that existing cells change their preference for the right or the left eye. In addition, another of the researchers' observations also points to such a restructuring: The arrangement of the columns changes. While the pattern initially looks stripy, these stripes dissolve in time and the pattern becomes more irregular.

"This is an enormous achievement by the brain undertaking such a restructuring while continuing to function," says Wolfgang Keil, scientist at the Max Planck Institute for Dynamics and Self-Organization Gttingen and first author of the study. "There is no engineer behind this conducting the planning, the process must generate itself." The researchers used mathematical models and computer simulations to investigate how the brain could proceed to achieve this restructuring. On the one hand, the brain tries to keep the neighbourhood relations in the visual cortex as uniform as possible. On the other, the development of the visual cortex is determined by the visual process itself cells which have once been stimulated more strongly by the left or right eye try to maintain this particular calling. The researchers' model explains the formation of columns by taking both these tendencies into account. The scientists showed that when the tissue grows and the size of the columns is kept constant, the columns in the computer model change exactly as they had observed in their experimental studies on the visual cortex of the cat: The stripes dissolve into a zigzag pattern and thus become more irregular. In this way, the researchers provide a mathematical basis which realistically describes how the visual cortex could restructure during the growth phase.


'/>"/>

Contact: Wolfgang Keil
wolfgang@nld.ds.mpg.de
49-055-151-76551
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Bigpoint Adds Kongregate to Growing List of Content Distribution Partners
2. Moffitt Cancer Center: Growing interest in prognostic test for non-small cell lung cancer
3. Breakthrough reveals blood vessel cells are key to growing unlimited amounts of adult stem cells
4. Ecologists discover forests are growing faster
5. Growing cartilage -- no easy task
6. Northern forests do not benefit from lengthening growing season
7. Marine aquaculture could feed growing world population
8. Growing cartilage from stem cells
9. Growing greener greens
10. Strategy outlined for growing bioenergy while protecting wildlife
11. Air pollutants from abroad a growing concern, says new report
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Growing brain is particularly flexible
(Date:3/7/2017)... , March 7, 2017 Brandwatch , the leading ... The Prince,s Trust to uncover insights to support its ... Trust. The UK,s leading youth charity will be using ... results and get a better understanding of the topics and issues ... ...
(Date:3/2/2017)... , March 2, 2017 Summary This ... Perrigo and its partnering interests and activities since 2010. ... Read the ... and Alliance since 2010 report provides an in-depth insight into ... sciences companies. On demand company reports are prepared ...
(Date:3/2/2017)... 2017 Australian stem cell and regenerative medicine ... signed an agreement with the Monash Lung Biology Network, ... Institute and Department of Pharmacology at Monash University, ... study to support the use of Cymerus™ mesenchymal stem ... Asthma is a chronic, long term lung condition ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... , ... March 21, 2017 , ... The Conference Forum ... (CMO Summit) to be held on May 10-11, 2017, at the Colonnade Hotel in ... specifically for Chief Medical Officer peer-to-peer learning, benchmarking and support. , “The Chief Medical ...
(Date:3/22/2017)... ... March 22, 2017 , ... March 22, 2017...Council for ... another green revolution, one that utilizes technological innovation in smart, sustainable ways. Humans depend ... life such as aesthetics and environmental stability. This paper is the first in a ...
(Date:3/22/2017)... SAN FRANCISCO , March 22, 2017 /PRNewswire/ ... the fastest growing genetic information companies, today announced ... the diagnosis of Spinal Muscular Atrophy (SMA) ... the leading lethal genetic disorders among infants as ... disease in childhood. The new test, announced during ...
(Date:3/20/2017)... Diego, CA (PRWEB) , ... March 20, 2017 ... ... novel therapies for gastrointestinal (GI) disorders, today announced that it has entered into ... (NRG-4) for therapies in inflammatory bowel disease including Necrotizing Enterocolitis (rare orphan disease) ...
Breaking Biology Technology: