Navigation Links
Greenhouse gases from forest soils

This release is available in German.

Reactive nitrogen compounds from agriculture, transport, and industry lead to increased emissions of the greenhouse gas nitrous oxide (N2O) from forests in Europe. Nitrous oxide emission from forest soils is at least twice as high as estimated so far by the Intergovernmental Panel on Climate Change (IPCC). This is one of the key messages of the first study on nitrogen in Europe (European Nitrogen Assessment, ENA) that is presented this week at the International Conference "Nitrogen and Global Change 2011" in Edinburgh, Scotland.

Reactive nitrogen compounds (e.g. NH3 and NOx) are mainly of anthropogenic origin. After their deposition on forests via air, they are partly converted into nitrous oxide (N2O). Following carbon dioxide and methane, nitrous oxide is the third biggest producer of the greenhouse effect. One kilogramme of nitrous oxide is about 300 times as greenhouse-effective as the same amount of carbon dioxide.

The ENA study performed by more than 200 scientific and political experts from 21 countries and 89 organisations concludes that the input of reactive nitrogen from air in the European forests so far has been underestimated significantly. Based on the information now available, about 2 to 6% of the atmospheric reactive nitrogen is converted into nitrous oxide that is emitted from forest soil into the atmosphere again. The corresponding estimate of the IPCC so far was about 1% only.

Over a forest area of 188 million hectares, deposition of reactive nitrogen increased from 1860 to 2000 by 1.5 million tons per year. This corresponds to an annual increase in reactive nitrogen per hectare forest by about 8 kilogrammes.

The increased atmospheric input of reactive nitrogen mainly comes from fertilisation in agriculture and the associated volatilisation of ammonia and from nitrogen oxide emissions due to the combustion of fossil fuels or biomass burning.

Increased deposition of reactive nitrogen on forests does not only cause climate-damaging nitrous oxide emissions from forest soils, but also a loss of diversity of plant and animal species and enhanced nitrate emissions into water.

When presenting the ENA study in Edinburgh, Professor Klaus Butterbach-Bahl emphasised: "The present atmospheric reactive nitrogen deposition is much too high. Our analysis shows that significant reductions in particular of ammonia emissions from agricultural activities are needed to reduce nitrous gas emissions from forest soils."

Klaus Butterbach-Bahl is professor at Karlsruhe Institute of Technol-ogy (KIT). He is heading the Atmospheric Environmental Research Division of the Institute of Meteorology and Climate Research (IMK-IFU) and lead author of the ENA chapter on reactive nitrogen as a threat to the European greenhouse balance.

The ENA study is the first study describing the multiple threats of nitrogen pollution, including its ecological and economic impacts, i.e. its contribution to climate change and biodiversity loss on the European scale. The ENA study also identifies the regions at greatest risk in Europe and outlines actions to be taken to reduce the risks to protect the environment and public health.


Contact: Monika Landgraf
Helmholtz Association of German Research Centres

Related biology news :

1. New information provides sustainable options for greenhouse operations
2. Can biochar help suppress greenhouse gases?
3. Solar greenhouses: Chinas winning solution to global energy crisis
4. Arctic climate variation under ancient greenhouse conditions
5. Neiker-Tecnalia creates air-conditioned greenhouse with alternative energies
6. The undead may influence biodiversity, greenhouse gas emissions
7. MU scientists find new farming method to reduce greenhouse gases, increase farm yields
8. Freshwater methane release changes greenhouse gas equation
9. New technology improves greenhouse, plant microclimates
10. Rising greenhouse gases profoundly impact microscopic marine life
11. Global rivers emit 3 times IPCC estimates of greenhouse gas nitrous oxide
Post Your Comments:
(Date:11/17/2015)... 2015 Paris , ... --> Paris , qui s,est tenu ... le leader de l,innovation biométrique, a inventé le premier ... empreintes sur la même surface de balayage. Jusqu,ici, deux ... pour les empreintes digitales. Désormais, un seul scanner est ...
(Date:11/17/2015)... SOUTH EASTON, Mass. , Nov. 17, 2015 /PRNewswire/ ... "Company"), a leader in the development and sale of ... to the worldwide life sciences industry, today announced it ... closing of its $5 million Private Placement (the "Offering"), ... Offering to $4,025,000.  One or more additional closings are ...
(Date:11/12/2015)... 12, 2015  A golden retriever that stayed healthy ... (DMD) has provided a new lead for treating this ... Broad Institute of MIT and Harvard and the University ... Cell, pinpoints a protective gene ... disease,s effects. The Boston Children,s lab of Lou ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... CITY , Nov. 25, 2015 /PRNewswire/ - Aeterna ... affirms that its business and prospects remain fundamentally ... , Zoptrex™ (zoptarelin doxorubicin) recently received DSMB recommendation ... to completion following review of the final interim ... Phase 2 Primary Endpoint in men with heavily ...
(Date:11/25/2015)... , November 25, 2015 ... Research Report is a professional and in-depth study ...      (Logo: ) , ... of the industry including definitions, classifications, applications and ... provided for the international markets including development trends, ...
(Date:11/24/2015)... HILLS, N.J. (PRWEB) , ... November 24, 2015 , ... ... as the recipient of the 2016 USGA Green Section Award. Presented annually since 1961, ... golf through his or her work with turfgrass. , Clarke, of Iselin, ...
(Date:11/24/2015)... - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ICO) ... quarter ended September 30, 2015. Amounts, unless specified ... under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of iCo ... value enriching for this clinical program, but also ...
Breaking Biology Technology: