Navigation Links
Greenhouse gases from forest soils
Date:4/12/2011

This release is available in German.

Reactive nitrogen compounds from agriculture, transport, and industry lead to increased emissions of the greenhouse gas nitrous oxide (N2O) from forests in Europe. Nitrous oxide emission from forest soils is at least twice as high as estimated so far by the Intergovernmental Panel on Climate Change (IPCC). This is one of the key messages of the first study on nitrogen in Europe (European Nitrogen Assessment, ENA) that is presented this week at the International Conference "Nitrogen and Global Change 2011" in Edinburgh, Scotland.

Reactive nitrogen compounds (e.g. NH3 and NOx) are mainly of anthropogenic origin. After their deposition on forests via air, they are partly converted into nitrous oxide (N2O). Following carbon dioxide and methane, nitrous oxide is the third biggest producer of the greenhouse effect. One kilogramme of nitrous oxide is about 300 times as greenhouse-effective as the same amount of carbon dioxide.

The ENA study performed by more than 200 scientific and political experts from 21 countries and 89 organisations concludes that the input of reactive nitrogen from air in the European forests so far has been underestimated significantly. Based on the information now available, about 2 to 6% of the atmospheric reactive nitrogen is converted into nitrous oxide that is emitted from forest soil into the atmosphere again. The corresponding estimate of the IPCC so far was about 1% only.

Over a forest area of 188 million hectares, deposition of reactive nitrogen increased from 1860 to 2000 by 1.5 million tons per year. This corresponds to an annual increase in reactive nitrogen per hectare forest by about 8 kilogrammes.

The increased atmospheric input of reactive nitrogen mainly comes from fertilisation in agriculture and the associated volatilisation of ammonia and from nitrogen oxide emissions due to the combustion of fossil fuels or biomass burning.

Increased deposition of reactive nitrogen on forests does not only cause climate-damaging nitrous oxide emissions from forest soils, but also a loss of diversity of plant and animal species and enhanced nitrate emissions into water.

When presenting the ENA study in Edinburgh, Professor Klaus Butterbach-Bahl emphasised: "The present atmospheric reactive nitrogen deposition is much too high. Our analysis shows that significant reductions in particular of ammonia emissions from agricultural activities are needed to reduce nitrous gas emissions from forest soils."

Klaus Butterbach-Bahl is professor at Karlsruhe Institute of Technol-ogy (KIT). He is heading the Atmospheric Environmental Research Division of the Institute of Meteorology and Climate Research (IMK-IFU) and lead author of the ENA chapter on reactive nitrogen as a threat to the European greenhouse balance.

The ENA study is the first study describing the multiple threats of nitrogen pollution, including its ecological and economic impacts, i.e. its contribution to climate change and biodiversity loss on the European scale. The ENA study also identifies the regions at greatest risk in Europe and outlines actions to be taken to reduce the risks to protect the environment and public health.


'/>"/>

Contact: Monika Landgraf
presse@kit.edu
49-721-608-47414
Helmholtz Association of German Research Centres
Source:Eurekalert

Related biology news :

1. New information provides sustainable options for greenhouse operations
2. Can biochar help suppress greenhouse gases?
3. Solar greenhouses: Chinas winning solution to global energy crisis
4. Arctic climate variation under ancient greenhouse conditions
5. Neiker-Tecnalia creates air-conditioned greenhouse with alternative energies
6. The undead may influence biodiversity, greenhouse gas emissions
7. MU scientists find new farming method to reduce greenhouse gases, increase farm yields
8. Freshwater methane release changes greenhouse gas equation
9. New technology improves greenhouse, plant microclimates
10. Rising greenhouse gases profoundly impact microscopic marine life
11. Global rivers emit 3 times IPCC estimates of greenhouse gas nitrous oxide
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/15/2016)... March 15, 2016 Yissum Research Development ... technology-transfer company of the Hebrew University, announced today the ... sensing technology of various human biological indicators. Neteera Technologies ... million from private investors. ... the detection of electromagnetic emissions from sweat ducts, enables ...
(Date:3/10/2016)... , March 10, 2016 ... new market research report "Identity and Access Management Market ... Audit, Compliance, and Governance), by Organization Size, by Deployment, ... 2020", published by MarketsandMarkets, The market is estimated to ... 12.78 Billion by 2020, at a Compound Annual Growth ...
(Date:3/8/2016)... , March 8, 2016   Valencell , ... today announced it has secured $11M in Series ... Tech, a new venture fund being launched by ... participation from existing investors TDF Ventures and WSJ ... to continue its triple-digit growth and accelerate its ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... India , April 28, 2016 ... JT, Stirling, and Brayton Cryocoolers), Service (Technical Support, Product ... and Geography - Global Forecast to 2022", published by ... USD 2.94 Billion by 2022, at a CAGR of ... 70 market data Tables and 94 Figures spread through ...
(Date:4/28/2016)... ... April 28, 2016 , ... Connecticut Innovations (CI), ... today announced the launch of VentureClash , a $5 million global investment ... “VentureClash looks to attract the best early-stage companies here in Connecticut, around the ...
(Date:4/28/2016)... ... April 28, 2016 , ... As ... recruiting top industry experts, and expanding its LATAM network and logistics capabilities. ... clients to manage their clinical trial projects. , The expansion will provide unmatched ...
(Date:4/27/2016)... ... April 27, 2016 , ... Cambridge Semantics, ... web technology, today announced that it has been named to The Silicon Review’s “20 ... services and other markets, Cambridge Semantics serves the needs of end users facing some ...
Breaking Biology Technology: