Navigation Links
Greenhouse gas likely altering ocean foodchain
Date:7/2/2013

Climate change may be weeding out the bacteria that form the base of the ocean's food chain, selecting certain strains for survival, according to a new study.

In climate change, as in everything, there are winners and losers. As atmospheric carbon dioxide levels and temperature rise globally, scientists increasingly want to know which organisms will thrive and which will perish in the environment of tomorrow.

The answer to this question for nitrogen-fixing cyanobacteria (bacteria that obtain energy through photosynthesis, or "blue-green algae") turns out to have implications for every living thing in the ocean. Nitrogen-fixing is when certain special organisms like cyanobacteria convert inert and therefore unusable nitrogen gas from the air into a reactive form that the majority of other living beings need to survive. Without nitrogen fixers, life in the ocean could not survive for long.

"Our findings show that CO2 has the potential to control the biodiversity of these keystone organisms in ocean biology, and our fossil fuel emissions are probably responsible for changing the types of nitrogen fixers that are growing in the ocean," said David Hutchins, professor of marine environmental biology at the USC Dornsife College of Letters, Arts and Sciences and lead author of an article about this research that appeared in Nature Geoscience on June 30.

"This may have all kinds of ramifications for changes in ocean food chains and productivity, even potentially for resources we harvest from the ocean such as fisheries production," Hutchins said.

Hutchins and his team studied two major groups of nitrogen-fixing cyanobacteria: Trichodesmium, which forms large floating colonies big enough to see with the naked eye and makes vast "blooms" in the open ocean, and Crocosphaera, which is also very abundant but is a single-celled, microscopic organism.

Previous research showed that these two types of cyanobacteria should be some of the biggest "winners" of climate change, thriving in high CO2 levels and warmer oceans. However, those previous studies only examined one or two strains of the organisms.

That's where USC's unique resource comes into play the university is home to a massive culture library of strains and species of the organisms assembled by USC Associate Professor Eric Webb.

Using the culture library, the team was able to show that some strains grow better at CO2 levels not seen since the start of the Industrial Revolution, while others will thrive in the future "greenhouse" Earth.

"It's not that climate change will wipe out all nitrogen fixers; we've shown that there's redundancy in nature's system. Rather, increasing atmospheric carbon dioxide changes specifically which nitrogen fixers are likely to thrive," Hutchins said. "And we're not entirely certain how that will change the ocean of tomorrow."


'/>"/>

Contact: Robert Perkins
perkinsr@usc.edu
213-740-9226
University of Southern California
Source:Eurekalert

Related biology news :

1. Weizmann Institute solar technology to convert greenhouse gas into fuel
2. Caution needed with new greenhouse gas emission standards
3. Destroyed coastal habitats produce significant greenhouse gas
4. Smart growth strategies curb car use, greenhouse gas emissions, SF State study suggests
5. Agriculture & food production contribute up to 29 percent of global greenhouse gas emissions
6. Toward reducing the greenhouse gas emissions of the Internet and telecommunications
7. In beef production, cow-calf phase contributes most greenhouse gases
8. Cities can reduce greenhouse gas emissions by 70 percent, says U of T researcher
9. New method for greenhouse gas predictions
10. Amplified greenhouse effect shaping North into South
11. Amplified greenhouse effect shifts norths growing seasons
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/16/2016)... SAN FRANCISCO , June 16, 2016 /PRNewswire/ ... Market size is expected to reach USD ... report by Grand View Research, Inc. Technological proliferation ... and banking applications are expected to drive the ... ) , The development of ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of the medical ... premium product recently added to the range of products distributed by Ampronix. ... ... ... Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... is pleased to announce the launch of their brand, UP4™ Probiotics, into Target ... over 35 years, is proud to add Target to its list of well-respected ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... Plate® YM (Yeast and Mold) microbial test has received AOAC Research Institute approval ... of microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the ... at the Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application ... team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our ...
(Date:6/23/2016)... NEW YORK , June 23, 2016 ... the trading session at 4,833.32, down 0.22%; the Dow Jones ... the S&P 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ... BIND Therapeutics Inc. (NASDAQ: BIND ). Learn more ...
Breaking Biology Technology: