Navigation Links
'Greener' aerogel technology holds potential for oil and chemical clean-up
Date:2/25/2014

MADISON, Wis. Cleaning up oil spills and metal contaminates in a low-impact, sustainable and inexpensive manner remains a challenge for companies and governments globally.

But a group of researchers at the University of WisconsinMadison is examining alternative materials that can be modified to absorb oil and chemicals without absorbing water. If further developed, the technology may offer a cheaper and "greener" method to absorb oil and heavy metals from water and other surfaces.

Shaoqin "Sarah" Gong, a researcher at the Wisconsin Institute for Discovery (WID) and associate professor of biomedical engineering, graduate student Qifeng Zheng, and Zhiyong Cai, a project leader at the USDA Forest Products Laboratory in Madison, have recently created and patented the new aerogel technology.

Aerogels, which are highly porous materials and the lightest solids in existence, are already used in a variety of applications, ranging from insulation and aerospace materials to thickening agents in paints. The aerogel prepared in Gong's lab is made of cellulose nanofibrils (sustainable wood-based materials) and an environmentally friendly polymer. Furthermore, these cellulose-based aerogels are made using an environmentally friendly freeze-drying process without the use of organic solvents.

It's the combination of this "greener" material and its high performance that got Gong's attention.

"For this material, one unique property is that it has superior absorbing ability for organic solvents up to nearly 100 times its own weight," she says. "It also has strong absorbing ability for metal ions."

Treating the cellulose-based aerogel with specific types of silane after it is made through the freeze-drying process is a key step that gives the aerogel its water-repelling and oil-absorbing properties.

"So if you had an oil spill, for example, the idea is you could throw this aerogel sheet in the water and it would start to absorb the oil very quickly and efficiently," she says. "Once it's fully saturated, you can take it out and squeeze out all the oil. Although its absorbing capacity reduces after each use, it can be reused for a couple of cycles."

In addition, this cellulose-based aerogel exhibits excellent flexibility as demonstrated by compression mechanical testing.

Though much work needs to be done before the aerogel can be mass-produced, Gong says she's eager to share the technology's potential benefits beyond the scientific community.

"We are living in a time where pollution is a serious problem especially for human health and for animals in the ocean," she says. "We are passionate to develop technology to make a positive societal impact."


'/>"/>
Contact: Shaoqin Gong
sgong@engr.wisc.edu
608-316-4311
University of Wisconsin-Madison
Source:Eurekalert  

Related biology news :

1. New study demonstrates the role of urban greenery in CO2 exchange
2. A greener way to fertilize nursery crops
3. Researchers building stronger, greener concrete with biofuel byproducts
4. More food and greener farming with specialised transporters for plants
5. Elevated carbon dioxide making arid regions greener
6. Making hydrogenation greener
7. A greener, more sustainable source of ingredients for widely used plastics
8. Team uses forest waste to develop cheaper, greener supercapacitors
9. Iron-based process promises greener, cheaper and safer drug and perfume production
10. A new species of Oak hidden away in the greenery of Ton Pariwat Wildlife Sanctuary
11. Labor der Zukunft -- Tomorrows laboratory technology
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
'Greener' aerogel technology holds potential for oil and chemical clean-up
(Date:4/28/2016)... and BANGALORE, India , April 28, 2016 ... a product subsidiary of Infosys (NYSE: INFY ), ... a global partnership that will provide end customers ... mobile banking and payment services.      (Logo: ... innovation area for financial services, but it also plays a ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/15/2016)... , April 15, 2016 ... "Global Gait Biometrics Market 2016-2020,"  report to their ... ) , ,The global gait biometrics market ... 13.98% during the period 2016-2020. Gait ... which can be used to compute factors that ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... the release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” ... and retention in this eBook by providing practical tips, tools, and strategies for ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
Breaking Biology Technology: