Navigation Links
Green gel
Date:4/18/2008

This release is available in German.

Researchers at the University of California, Berkeley (USA) have now developed a new strategy for the formation of hybrid materials from synthetic polymers and proteins. They have thus been able to fuse the specific biological functions of proteins with the advantageous bulk and processing properties of plastics. Polymer-protein hybrid materials may be of use in the manufacture of sensors, nanomachine parts, or drug-delivery systems. As Aaron P. Esser-Kahn and Matthew B. Francis report in the journal Angewandte Chemie, they have successfully synthesized a green-fluorescing biodegradable gel that responds to changes in pH value and temperature.

Previous processes for the production of hybrid materials depended on very specific coupling techniques that could not be used for some protein side-chains. In contrast, the new method developed by the Berkeley researchers is broadly applicable because in principle it is suitable for any protein. The coupling occurs at both ends of the protein chainand these are the same for all proteins: one amino acid group and one carboxylic acid group. Initially, two parallel but mutually independent (orthogonal) reactions are used to activate the two ends of the chain. These are then attached to special chemical anchor points on the polymer. The proteins thus cross-link the individual polymer chains into a three-dimensional network, forming what is known as a hydrogel. A hydrogel is a solid, gelatinous mass consisting of water incorporated in a polymer network. A well-known example of a hydrogel is the soft contact lens.

Francis and Esser-Kahn chose to use a protein that fluoresces green to cross-link their polymer chains. Because the protein maintains its normal folding pattern even after attachment to the polymer, the fluorescence is also maintained: The entire gel fluoresces green.

This hybrid material has a special trait: the cross-linking of the polymer chains is achieved exclusively by means of the proteins. Because proteins can be attacked by proteases, enzymes that disintegrate proteins, these gels are biodegradable. The green fluorescence of the protein is pH-dependent. The gel correspondingly also reacts to changes in pH. It only fluoresces in the basic range; in a lightly acidic medium, the gel no longer fluoresces. Raising the temperature also elicits a response from the gel. The protein denatures at about 70 C, which quenches the fluorescence and causes the gel to shrink.


'/>"/>

Contact: Matthew B. Francis
francis@cchem.berkeley.edu
510-643-9915
Wiley-Blackwell
Source:Eurekalert

Related biology news :

1. Green tea boosts production of detox enzymes, rendering cancerous chemicals harmless
2. New study shows greenback cutthroat trout involved in recovery effort misidentified
3. American Chemical Society calls green chemistry bill a smart step
4. Salmon garnish points the way to green electronics
5. Using green chemistry to deliver cutting-edge drugs
6. Green skies: Engineers work may reduce jet travels role in global warming
7. A greenhouse in order to study the impact of climate change on plants
8. Green leather is in this season
9. Study involving more than 100 scientists provides new insights on green algae
10. Green alga genome project catalogs carbon capture machinery
11. Green algae -- the nexus of plant/animal ancestry
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
(Date:3/24/2017)... Mar 24, 2017 Research and Markets has ... Market Analysis & Trends - Industry Forecast to 2025" report ... ... at a CAGR of around 15.1% over the next decade to ... report analyzes the market estimates and forecasts for all the given ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... ... April 21, 2017 , ... The University of Connecticut, ... funding to three startups through the UConn Innovation Fund. The $1.5 million UConn ... affiliated with UConn. , The UConn Innovation Fund provides investments of up to ...
(Date:4/21/2017)... ... April 21, 2017 , ... ... nourishing a range of emerging technology-based businesses, recently earned a $77,518 grant from ... , Founded in 2004, FITCI is Frederick’s first incubator. A non-profit corporation, ...
(Date:4/20/2017)... ... April 20, 2017 , ... USDM Life Sciences , the ... and healthcare industries, is pleased to announce Holger Braemer as Vice President ... Europe GmbH” based in Germany. , Braemer is an integral part of USDM’s ...
(Date:4/20/2017)... ... April 20, 2017 , ... Energetiq ... applications, announced today that Chief Executive Officer (CEO) Debbie Gustafson has been appointed ... the global industry association connecting the electronics manufacturing supply chain. The mission of ...
Breaking Biology Technology: