Navigation Links
Graphene not all good
Date:4/29/2014

RIVERSIDE, Calif. In a first-of-its-kind study of how a material some think could transform the electronics industry moves in water, researchers at the University of California, Riverside Bourns College of Engineering found graphene oxide nanoparticles are very mobile in lakes or streams and therefore likely to cause negative environmental impacts if released.

Graphene oxide nanoparticles are an oxidized form of graphene, a single layer of carbon atoms prized for its strength, conductivity and flexibility. Applications for graphene include everything from cell phones and tablet computers to biomedical devices and solar panels.

The use of graphene and other carbon-based nanomaterials, such as carbon nanotubes, are growing rapidly. At the same time, recent studies have suggested graphene oxide may be toxic to humans.

As production of these nanomaterials increase, it is important for regulators, such as the Environmental Protection Agency, to understand their potential environmental impacts, said Jacob D. Lanphere, a UC Riverside graduate student who co-authored a just-published paper about graphene oxide nanoparticles transport in ground and surface water environments.

"The situation today is similar to where we were with chemicals and pharmaceuticals 30 years ago," Lanphere said. "We just don't know much about what happens when these engineered nanomaterials get into the ground or water. So we have to be proactive so we have the data available to promote sustainable applications of this technology in the future."

The paper co-authored by Lanphere, "Stability and Transport of Graphene Oxide Nanoparticles in Groundwater and Surface Water," was published in a special issue of the journal Environmental Engineering Science.

Other authors were: Sharon L. Walker, an associate professor and the John Babbage Chair in Environmental Engineering at UC Riverside; Brandon Rogers and Corey Luth, both undergraduate students working in Walker's lab; and Carl H. Bolster, a research hydrologist with the U.S. Department of Agriculture in Bowling Green, Ky.

Walker's lab is one of only a few in the country studying the environmental impact of graphene oxide. The research that led to the Environmental Engineering Science paper focused on understanding graphene oxide nanoparticles' stability, or how well they hold together, and movement in groundwater versus surface water.

The researchers found significant differences.

In groundwater, which typically has a higher degree of hardness and a lower concentration of natural organic matter, the graphene oxide nanoparticles tended to become less stable and eventually settle out or be removed in subsurface environments.

In surface waters, where there is more organic material and less hardness, the nanoparticles remained stable and moved farther, especially in the subsurface layers of the water bodies.

The researchers also found that graphene oxide nanoparticles, despite being nearly flat, as opposed to spherical, like many other engineered nanoparticles, follow the same theories of stability and transport.


'/>"/>

Contact: Sean Nealon
sean.nealon@ucr.edu
951-827-1287
University of California - Riverside
Source:Eurekalert  

Related biology news :

1. High-resolution atomic imaging of specimens in liquid by TEM using graphene liquid cell
2. Using graphene, scientists develop a less toxic way to rust-proof steel
3. Graphene plasmonics beats the drug cheats
4. Researchers use graphene quantum dots to detect humidity and pressure
5. Graphene nanoribbons for reading DNA
6. Graphene nanoribbons an ice-melting coat for radar
7. UNIST research team opens graphene band-gap
8. Graphene sandwich improves images of biomolecules
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Graphene not all good
(Date:2/9/2017)... -- The biomass boiler market report by Transparency Market ... globally in terms of revenue (US$ Mn) based on ... biomass boilers has been segmented on the basis of ... market based on feedstock type, has been segmented into ... crops, urban residues, and others. On the basis of ...
(Date:2/8/2017)... Feb. 7, 2017 Report Highlights ... 2021 from $8.3 billion in 2016 at a compound ... 2021. Report Includes - An overview of the ... trends, with data from 2015 and 2016, and projections ... Segmentation of the market on the basis of product ...
(Date:2/3/2017)...  Texas Biomedical Research Institute announced that its Board of ... as the Institute,s new President and CEO. Dr. Schlesinger will ... He is currently the Chair of the Department of Microbial ... Interface Biology at Ohio State University. "We are ... CEO of Texas Biomed," said Dr. James O. Rubin ...
Breaking Biology News(10 mins):
(Date:2/24/2017)... BEIJING, Feb. 23, 2017 China Biologic Products, Inc. ... integrated plasma-based biopharmaceutical company in China, today announced its financial ... Fourth Quarter 2016 Financial Highlights ... increased by 21.7% in RMB terms, or increased by 13.6% ... the same quarter of 2015. Gross profit ...
(Date:2/23/2017)... Feb. 23, 2017 ... except per share data, unaudited)Three Months Ended December 31,Twelve ... Revenue $       ... 1,117$   89026%Aldurazyme Net Product Revenue ... 906538%34823946%Naglazyme Net Product Revenue  756025%297303(2)%Vimizim ...
(Date:2/23/2017)... , Feb. 23, 2017  In Atlanta, it seems ... fashion, and culture intertwine to create an expressive and dynamic ... reflect this energy and contribute to it. ... Hair Fairies seeks to carry on that tradition ... Atlanta salon is the newest of ...
(Date:2/23/2017)... Baltimore, Maryland (PRWEB) , ... ... ... firm, PathSensors, Inc., announced today that in a published evaluation of multiple ... (PNNL), a U.S. Department of Energy Laboratory, PathSensors’ CANARY® biosensor threat detection ...
Breaking Biology Technology: