Navigation Links
Grafted limb cells acquire molecular 'fingerprint' of new location, UCI study shows
Date:10/24/2013

Irvine, Calif., Oct. 24, 2013 Cells triggering tissue regeneration that are taken from one limb and grafted onto another acquire the molecular "fingerprint," or identity, of their new location, UC Irvine developmental biologists have discovered.

The findings provide a better understanding of how grafted tissue changes its identity to match the host tissue environment during the process of limb regeneration and bring scientists closer to establishing regenerative therapies for humans. The results also challenge the conventional assumption in regeneration biology that cellular properties are predetermined.

By examining cells from blastema tissue in salamanders amphibians that can regrow lost limbs the researchers learned that grafted tissue does not spur growth of structures consistent with the region of the limb it came from, but rather it transforms into the cell signature of the limb region it's been grafted onto. This ability of cells to alter identity from the old location to the new location is called positional plasticity.

"This work provides the first piece of molecular evidence supporting the idea that early- and late-stage blastema cells receive information about the 'blueprint' of the missing limb from the host site," said Catherine D. McCusker, postdoctoral fellow in developmental & cell biology and lead author on the study.

The blastema is a group of cells that accumulate at the site of a severed limb in organisms such as salamanders and re-create the missing appendage. It's formed when regenerating nerve fibers from the limb stump interact with thin skin that covers the surface of the wound.

This interaction attracts cells from the stump tissue that undergo a process called dedifferentiation, in which the cells revert to a more embryonic state. Once a blueprint of the missing limb structures is established in the blastema, these cells gradually differentiate into the replacement limb.

In her study, McCusker found that signals from nerve fibers played a crucial role in sustaining the cells' ability to change their identity to suit a new environment throughout the course of regeneration. She hypothesizes that it's important for the nerve fibers to maintain positional plasticity in the blastema until a complete blueprint of the new limb is formulated.

These findings also have potential implications in cancer biology, as cancer cells too are strongly influenced by the surrounding tissue environment.

"Our study shows that the blueprint, which drives the behavior of cells, can be manipulated," McCusker noted. "Thus, understanding how differing environments affect blastema cell behavior will provide valuable insight into how to control the behavior of cancer cells."


'/>"/>

Contact: Andrea Burgess
andrea.burgess@uci.edu
949-824-6282
University of California - Irvine
Source:Eurekalert

Related biology news :

1. Tortoise and the hare: New drug stops rushing cancer cells, slow and steady healthy cells unharmed
2. Stem cells can repair a damaged cornea
3. Scientists produce eye structures from human blood-derived stem cells
4. Study demonstrates cells can acquire new functions through transcriptional regulatory network
5. Epigenetic signatures direct the repair potential of reprogrammed cells
6. Researchers print live cells with a standard inkjet printer
7. Nanopills release drugs directly from the inside of cells
8. Protein jailbreak helps breast cancer cells live
9. Newly found protein helps cells build tissues
10. BU researchers derive purified lung and thyroid progenitors from embryonic stem cells
11. Housekeeping mechanism for brain stem cells discovered
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/5/2016)... , Dec. 5, 2016  The Office of ... published "Can CT Scans Enhance or Replace Medico ... potential of supporting or replacing forensic autopsies with ... scan. In response to recommendations made ... exploring using CT scans as a potential component ...
(Date:12/2/2016)... , Dec. 1, 2016   SoftServe ... announced BioLock , an electrocardiogram (ECG) biosensor ... monitoring, a key IoT asset. The smart system ... a vehicle,s steering wheel and mobile devices to ... touch. As vehicle technology advances, so ...
(Date:11/30/2016)... CHICAGO , Nov. 30, 2016  higi ... a new partnership initiative targeting national brands, industry ... and reward their respective audiences for taking steps ... Since its inception in 2012, higi has built ... US, impacting over 38 million people who have ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... York , December 9, 2016 ... that the top five players in the  Global Label-Free ... in the overall market in 2015. Players such as ... Elmer have remained dominant in the global market due ... to ensure product innovation. Product upgrades and timely product ...
(Date:12/9/2016)... -- According to a new market research report "Oligonucleotide ... Equipment), Application (Research, PCR, Gene, DNA, NGS, Diagnostic, RNAI), End user ... global market is expected to reach USD 2.20 Billion by 2021 ... during the forecast period. Continue Reading ... ...
(Date:12/8/2016)... Medical Incorporated ("OncoSec") (NASDAQ: ONCS ), ... announced financial results for the fiscal first quarter ... our commitment to address an unmet medical need ... with the early clinical response data presented from ... on advancing our lead program – ImmunoPulse® IL-12 ...
(Date:12/8/2016)... SAN DIEGO , Dec. 8, 2016 /PRNewswire-USNewswire/ ... treatments for congestive heart failure and type 2 ... license for a novel adeno-associated virus (AAV) vector ... Kay , M.D., Ph.D., at Stanford University. The ... of its paracrine gene therapy product pipeline. ...
Breaking Biology Technology: