Navigation Links
'Good cholesterol' structure identified, could help explain protective effects
Date:3/13/2011

CINCINNATIUniversity of Cincinnati (UC) researchers have determined the structure of human HDL cholesterol and say the finding could help explain how this "fat packet" protects against cardiovascular diseases, including heart attack and stroke.

The study, led by W. Sean Davidson, PhD, professor in UC's pathology and laboratory medicine department, appears online ahead of print March 13, 2011, in the journal Nature Structural & Molecular Biology.

HDL (high-density lipoproteins) also known as "good cholesterol," are packets of protein and fat that deliver fat to specific locations within the body.

There is an increasing effort to create drugs that help to raise levels of HDL working in conjunction with existing drugs that lower "bad cholesterol," or low-density lipoproteins (LDL).

Studies of synthetically derived HDL have shown that an abundant protein in HDL, apolipoprotein A-I, plays a key role in HDL's cardioprotective anti-inflammatory and anti-oxidative properties.

"Unfortunately, we've known very little about the molecular details that explain HDL's protective effects," says Davidson. "A major reason for this is an almost complete lack of understanding of HDL's structure and how it interacts with other important plasma factors."

Rong Huang, PhD, a post-doctoral fellow in Davidson's laboratory, has isolated human HDL and analyzed its 3-D structure as it circulates in human plasma.

"Previous studies have only focused on synthetic HDL made in the test tube," Davidson says. "By isolating human HDL, we were able to focus on the broad range of HDL particles actually circulating in humans."

Team members used a series of sophisticated spectroscopic and mass spectrometric techniques to study HDL and have found that proteins of HDL form a cage-like structure that encapsulates its fatty cargo.

They determined that most of the HDL particles circulating in human plasma are remarkably similar in structure; however, they found evidence that the particles have a twisting or shock absorber-like motion that allows them to adapt to changes in particle fat content.

By determining the structure of HDL, Davidson and his team were able to conclude that the majority of physiological interactions occurring with HDLincluding its twisting movementsoccur at the particle surface, which is dominated by the cardioprotective protein apolipoprotein A-I.

This monopolization of the particle surface, Davidson says, suggests that other proteins have very little room to bind to HDL and probably have to interact with the protein itself, which could explain how apolipoprotein A-I plays such a dominant role in HDL function and its protective effects.

"This work presents the first detailed models of human plasma HDL and has important implications for understanding key interactions in plasma that modulate its protective functions in the context of cardiovascular disease," says Davidson.


'/>"/>

Contact: Dama Ewbank
dama.ewbank@uc.edu
513-558-4519
University of Cincinnati Academic Health Center
Source:Eurekalert

Related biology news :

1. Columbia professor to discuss good, bad aspects of choice at NJIT March 23 talk
2. What is good for you is bad for infectious bacteria
3. Homoplasy: A good thread to pull to understand the evolutionary ball of yarn
4. Good diets fight bad Alzheimers genes
5. UCLA Engineering advance with new nanomaterials good news for next-generation electronic devices
6. New findings in Indias Bt cotton controversy: Good for the field, bad for the farm?
7. Research proves new soybean meal sources are good fish meal alternatives
8. Female lizard turns the table: Why exaggerated coloration makes her a good mate
9. The good, the bad and the green -- harnessing the potential of bacteria
10. Looking good on greens
11. Wildlife biologists use dogs scat-sniffing talents for good
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC , ... announced the opening of an IoT Center of Excellence ... and expand the development of embedded iris biometric applications. ... level of convenience and security with unmatched biometric accuracy, ... identity aside from DNA. EyeLock,s platform uses video technology ...
(Date:5/9/2016)... , UAE, May 9, 2016 ... it comes to expanding freedom for high net worth ... Even in today,s globally connected world, there is still ... system could ever duplicate sealing your deal with a ... second passports by taking advantage of citizenship via investment ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 ... subsidiary of Infosys (NYSE: INFY ), and Samsung ... global partnership that will provide end customers with a ... and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... for financial services, but it also plays a fundamental part ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... PHILADELPHIA , June 27, 2016  Liquid ... today announced the funding of a Sponsored Research ... study circulating tumor cells (CTCs) from cancer patients.  ... changes in CTC levels correlate with clinical outcomes ... therapies. These data will then be employed to ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers ... 5000 and the 6000i models are higher end machines that use the more unconventional ... spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci has ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and Mold) microbial test has received AOAC Research Institute approval 061601. , “This ... introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. ...
Breaking Biology Technology: