Navigation Links
'Good cholesterol' structure identified, could help explain protective effects
Date:3/13/2011

CINCINNATIUniversity of Cincinnati (UC) researchers have determined the structure of human HDL cholesterol and say the finding could help explain how this "fat packet" protects against cardiovascular diseases, including heart attack and stroke.

The study, led by W. Sean Davidson, PhD, professor in UC's pathology and laboratory medicine department, appears online ahead of print March 13, 2011, in the journal Nature Structural & Molecular Biology.

HDL (high-density lipoproteins) also known as "good cholesterol," are packets of protein and fat that deliver fat to specific locations within the body.

There is an increasing effort to create drugs that help to raise levels of HDL working in conjunction with existing drugs that lower "bad cholesterol," or low-density lipoproteins (LDL).

Studies of synthetically derived HDL have shown that an abundant protein in HDL, apolipoprotein A-I, plays a key role in HDL's cardioprotective anti-inflammatory and anti-oxidative properties.

"Unfortunately, we've known very little about the molecular details that explain HDL's protective effects," says Davidson. "A major reason for this is an almost complete lack of understanding of HDL's structure and how it interacts with other important plasma factors."

Rong Huang, PhD, a post-doctoral fellow in Davidson's laboratory, has isolated human HDL and analyzed its 3-D structure as it circulates in human plasma.

"Previous studies have only focused on synthetic HDL made in the test tube," Davidson says. "By isolating human HDL, we were able to focus on the broad range of HDL particles actually circulating in humans."

Team members used a series of sophisticated spectroscopic and mass spectrometric techniques to study HDL and have found that proteins of HDL form a cage-like structure that encapsulates its fatty cargo.

They determined that most of the HDL particles circulating in human plasma are remarkably similar in structure; however, they found evidence that the particles have a twisting or shock absorber-like motion that allows them to adapt to changes in particle fat content.

By determining the structure of HDL, Davidson and his team were able to conclude that the majority of physiological interactions occurring with HDLincluding its twisting movementsoccur at the particle surface, which is dominated by the cardioprotective protein apolipoprotein A-I.

This monopolization of the particle surface, Davidson says, suggests that other proteins have very little room to bind to HDL and probably have to interact with the protein itself, which could explain how apolipoprotein A-I plays such a dominant role in HDL function and its protective effects.

"This work presents the first detailed models of human plasma HDL and has important implications for understanding key interactions in plasma that modulate its protective functions in the context of cardiovascular disease," says Davidson.


'/>"/>

Contact: Dama Ewbank
dama.ewbank@uc.edu
513-558-4519
University of Cincinnati Academic Health Center
Source:Eurekalert

Related biology news :

1. Columbia professor to discuss good, bad aspects of choice at NJIT March 23 talk
2. What is good for you is bad for infectious bacteria
3. Homoplasy: A good thread to pull to understand the evolutionary ball of yarn
4. Good diets fight bad Alzheimers genes
5. UCLA Engineering advance with new nanomaterials good news for next-generation electronic devices
6. New findings in Indias Bt cotton controversy: Good for the field, bad for the farm?
7. Research proves new soybean meal sources are good fish meal alternatives
8. Female lizard turns the table: Why exaggerated coloration makes her a good mate
9. The good, the bad and the green -- harnessing the potential of bacteria
10. Looking good on greens
11. Wildlife biologists use dogs scat-sniffing talents for good
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)... ... Research and Markets has announced the addition of the "Global ... The report forecasts the global military biometrics market to grow at a ... has been prepared based on an in-depth market analysis with inputs from ... over the coming years. The report also includes a discussion of the ...
(Date:12/12/2016)... Dec. 12, 2016  Researchers at Trinity College, ... graphene by combining the material with Silly Putty. The ... pressure detector able to sense pulse, blood pressure, ... spider.  The research team,s findings ... read here:  http://science.sciencemag.org/content/354/6317/1257 ...
(Date:12/7/2016)... 7, 2016 BioCatch , the global leader ... patent portfolio, which grew to over 40 granted and pending patents. ... , , ... entitled " System, Device, and Method Estimating Force Applied to ... makers to forego costly hardware components needed to estimate the force and ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... , ... January 18, 2017 , ... ... tech innovators, engineers, and scientists from around the world, was today awarded the ... awards program is based entirely on merit and decided upon by a dedicated ...
(Date:1/19/2017)... 18, 2017  Northwest Biotherapeutics, Inc. (OTCQB: NWBO) ("NW ... therapies for operable and inoperable solid tumor cancers, announced ... Officer of NW Bio, will present at the Phacilitate ... the Hyatt Regency Hotel in Miami, Florida ... session entitled "New Therapeutic Approaches – Expanding the Reach ...
(Date:1/18/2017)... 2017 According to a new market research report "In ... Disease), & End User (Molecular Diagnostic Laboratories, Academic and Research Institutions) - Global ... 739.9 Million by 2021 from USD 557.1 Million in 2016, growing at a ... ... MarketsandMarkets Logo ...
(Date:1/18/2017)... ... 18, 2017 , ... Executive search firm Slone Partners proudly ... to the advancement of the clinical trials segment. Hosted in Miami, this conference ... planning and management. , As executive talent specialists in the industries central ...
Breaking Biology Technology: