Navigation Links
Going out on a (redwood tree) limb

How tall can a tree grow? Does sunlight or water limit the size and photosynthetic capacity of a leaf? Could constraints on leaf growth really determine the height of a tree? These are all questions that Alana Oldham of Humboldt State University, CA, was eager to answer as she and her colleagues dangled from an ancient redwood tree well over a football field's length in height above the ground.

Most trees, and many other plants, have thicker leaves on the top of their canopies with wider, more expanded leaves below. This difference in "sun" vs "shade" leaves is usually explained as an adaptation to different levels of light availability within the plants' crown. However, Oldham and her collaborators set out to investigate whether water stress might play an equal or more important role than light availability on the variation in top to bottom leaf anatomy in one of the tallest plants on earth, the redwood tree (Sequoia sempervirens). They published their novel findings in the July issue of the American Journal of Botany (

In order to separate the effects of light from water potential the authors collected data on a range of morphological and anatomical variables in leaves using a paired design, sampling from the inner and outer crown of each of five redwood trees at increasing height positions.

"This is the first time plant anatomists have collected height-paired leaf samples from both the inner and outer crowns of trees of significant height," Oldham notes. "Accessing the outermost branch tips in trees of this size requires risky techniques that have taken many years for more experienced canopy researchers than I to learn and develop. Only by obtaining leaves that grew at the same height in the tree but in different light environments could we separate the effects of light availability from those of hydrostatic tension."

"Some data are worth going out on a limb for," Oldham jokes.

Water stress increases with height in a tree's canopygravity pulls down on the water column, which in turn decreases water pressure as you move up the tree. To compensate for this decreased water pressure with increasing height, trees make anatomical changes in leaves which can lead to a reduction in photosynthesis in the upper canopy. Of the variables the authors measuredleaf length, leaf width, and the amount of air space (or mesoporosity) in a leafall decreased with height (explaining decreasing photosynthesis with height) while leaf thickness and transfusion tissue (which improve water-stress tolerance) increased with height. In contrast, none of the 15 anatomical traits measured differed between the inner and outer crown positions, where light availability differed.

"In tall redwoods its not light that drives leaf anatomy and morphology, but rather a height-associated increase in water stress due to the force of gravity pulling down on the water column as it rises over 110 m from the roots to the tree top," Oldham explains. "This gravitational pressure, known as hydrostatic tension, decreases water availability with height and so directly reduces leaf expansion which in turn lowers photosynthetic capacity in the tree tops. At the same time, hydrostatic tension puts tall trees at increased risk during drought events thus driving investments in functional anatomical traits that may allow redwoods to reach such great heights, but are costly in terms of lost opportunity for growth."

Oldham notes that "For Earth's tallest trees the force of gravity may be the biggest obstacle to further increases in height." With increasing height, the increasing effects of gravity drive tissue investments toward water stress tolerance, resulting in tradeoffs with carbon gain per unit leaf mass in the upper crown. This could result in diminishing rates of height growth with increasing height in redwoods.

Do other tall tree species also experience these tradeoffs? "Our current endeavor is to explore foliar anatomy across the height gradient in the three next tallest conifer species" Oldham said. "We plan to compare and contrast the impacts of hydrostatic tension on leaf development as well as uncover any species-specific traits that may help explain why some species have taller individuals than others."


Contact: Richard Hund
American Journal of Botany

Related biology news :

1. Going live with click chemistry
2. National Zoo scimitar-horned oryx going into the wild
3. 70 years old and going strong with Down syndrome and no dementia
4. How mirror neurons allow us to learn and socialize by going through the motions in the head
5. New infant feeding and obesity research adds insight to ongoing issue
6. Lobster traps going high tech
7. Going bananas for sustainable research -- scientists create fuel from African crop waste
8. A heart healthy diet and ongoing, moderate physical activity may protect against cognitive decline
9. WPI receives $1.3 million in federal awards for ongoing research in the life sciences
10. Going green on hold: Man-made activities can affect blue haze, worlds weather
11. Ongoing human evolution could explain recent rise in certain disorders
Post Your Comments:
Related Image:
Going out on a (redwood tree) limb
(Date:11/12/2015)... , Nov. 11, 2015   Growing need ... analytical tools has been paving the way for ... determination of discrete analytes in clinical, agricultural, environmental, ... being predominantly used in medical applications, however, their ... sectors due to continuous emphasis on improving product ...
(Date:11/10/2015)... , Nov. 10, 2015 ... behavioral biometrics that helps to identify and verify ... Signature is considered as the secure and accurate ... identification of a particular individual because each individual,s ... accurate results especially when dynamic signature of an ...
(Date:11/4/2015)... , November 4, 2015 ... new market report published by Transparency Market Research "Home Security ... Trends and Forecast 2015 - 2022", the global home security ... 30.3 bn by 2022. The market is estimated to ... period from 2015 to 2022. Rising security needs among ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... ... The United States Golf Association (USGA) today announced Dr. Bruce Clarke, of ... since 1961, the USGA Green Section Award recognizes an individual’s distinguished service to the ... of Iselin, N.J., is an extension specialist of turfgrass pathology in the department of ...
(Date:11/24/2015)... ... November 24, 2015 , ... International Society for Pharmaceutical Engineering ... premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference took place ... the largest number of attendees in more than a decade. , “The ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... The Academy ... Special Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the ... last few years. Many AMA members have embraced this type of racing and several ...
(Date:11/24/2015)... 24, 2015  Twist Bioscience, a company focused ... Ph.D., Twist Bioscience chief executive officer, will present ... December 1, 2015 at 3:10 p.m. Eastern Time at The ... --> --> ... Bioscience is on Twitter. Sign up to follow ...
Breaking Biology Technology: