Navigation Links
'Going off the grid' helps some bacteria hide from antibiotics
Date:4/25/2011

COLLEGE STATION, Texas, April 25, 2011 - Call them the Jason Bournes of the bacteria world.

Going "off the grid," like rogue secret agents, some bacteria avoid antibiotic treatments by essentially shutting down and hiding until it's safe to come out again, says Thomas Wood, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University.

This surreptitious and elaborate survival mechanism is explained in the online April edition of Nature Chemical Biology, which details the research of Wood and his post doctoral student Xiaoxue Wang along with colleagues Breann Brown, Wolfgang Peti and Rebecca Page of Brown University.

"Through our research, we're understanding that some bacteria go to 'sleep,' and that antibiotics only work on bacteria that are metabolically active," Wood explains. "You need actively growing bacteria to be susceptible to antibiotics. If the bacterium goes to sleep, the antibiotics, no matter what they do, are not effective because the bacterium is no longer doing the thing that the antibiotic is trying to shut down."

It's an alternative method for survival, Wood says, that starkly contrasts the widely studied genetically based approaches utilized by bacteria through which bacteria gain resistance to antibiotics as the result of mutations experienced throughout time. This mutation-free response, however, demonstrates that some bacteria need not mutate to survive external stressors, Wood says.

Instead, when triggered by an external stressor such as an antibiotic, a bacterial cell can render itself dormant by triggering an internal reaction that degrades the effectiveness of its own internal antitoxins, Wood explains. With its antitoxins damaged, the toxins present within the bacterial cell are left unchecked and damage the cell's metabolic processes so that it essentially shuts down, he adds.

It's self-inflicted damage but with a purpose.

"The cell normally doesn't want to hurt itself; it wants to grow as fast as possible," Wood states; the raison d'tre for a cell is to make another cell," Wood says. "However, most bacteria have this group of proteins, and if this group was active - if you got rid of the antitoxins - this group of toxins would either kill the cell or damage it."

Specifically, Wood and his colleagues found that when encountering oxidative stress, their bacterial cells initiated a process through which an antitoxin called MqsA was degraded, in turn allowing the toxin MqsR to degrade all of the cells' messenger RNA. This messenger RNA, Wood explains, plays a critical intermediate role in the cell's process of manufacturing proteins, so without it the cell can't make proteins. With the protein-manufacturing factory shut down, the bacterial cell goes dormant, and an antibiotic cannot "lock on" to the cell. When the stressor is removed, the bacterial cells eventually come back online and resume their normal activities, Wood says.

"It was the combination of the genetic studies at Texas A&M with our structural studies at Brown University that demonstrated that the proteins MqsR:MqsA form an entirely new family of toxin:antitoxin systems," Page says. "Remarkably, we have shown this system not only controls its own genes, but also many other genes in E. coli, including the gene that controls the response to oxidative stress."

This response mechanism, Wood emphasizes, does not replace the mutation-based approaches that have for years characterized cell behavior; it's merely another method in a multifaceted approach undertaken by bacteria to ensure survival.

"A small community of bacteria is in a sense hedging its bet against a threat to its survival by taking another approach," Wood says. "To the bacteria, this is always a numbers game. In one milliliter you can have a trillion bacterial cells, and they don't always do the same thing under stress.

"If we can determine that this 'going to sleep' is the dominant mechanism utilized by bacteria, then we can begin to figure out how to 'wake them up' so that they will be more susceptible to the antibiotic. This ideally would include simultaneously applying the antibiotic and a chemical that wakes up the bacteria. That's the goal - a more effective antibiotic."


'/>"/>

Contact: Ryan Garcia
ryan.garcia99@tamu.edu
979-845-9237
Texas A&M University
Source:Eurekalert

Related biology news :

1. Food safety study of beef trim leads to ongoing research collaboration
2. Russian boreal forests undergoing vegetation change, study shows
3. Going green: New program provides vital support for plant scientists
4. Going out on a (redwood tree) limb
5. Keystone Symposia awarded $1.37 million, 5-year NIH grant to fund ongoing diversity efforts
6. Ongoing human evolution could explain recent rise in certain disorders
7. Going green on hold: Man-made activities can affect blue haze, worlds weather
8. WPI receives $1.3 million in federal awards for ongoing research in the life sciences
9. A heart healthy diet and ongoing, moderate physical activity may protect against cognitive decline
10. Going bananas for sustainable research -- scientists create fuel from African crop waste
11. Lobster traps going high tech
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... 2017  On April 6-7, 2017, Sequencing.com will host ... hackathon at Microsoft,s headquarters in Redmond, ... on developing health and wellness apps that provide a ... Genome is the first hackathon for personal genomics ... companies in the genomics, tech and health industries are ...
(Date:3/28/2017)... PUNE, India , March 28, 2017 ... (Analog, IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), ... Maintenance), Vertical, and Region - Global Forecast to 2022", ... 30.37 Billion in 2016 and is projected to reach ... 15.4% between 2017 and 2022. The base year considered ...
(Date:3/23/2017)... , March 23, 2017 The report "Gesture Recognition and ... Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, the market ... CAGR of 29.63% between 2017 and 2022. Continue ... ... ...
Breaking Biology News(10 mins):
(Date:7/18/2017)... ... 18, 2017 , ... Allotrope Foundation won the 2017 in ... the Allotrope Framework for commercial use. , The Bio-IT World Best Practices Awards ... the critical role of information technology in modern biomedical research, but also to ...
(Date:7/17/2017)... ... July 17, 2017 , ... ... instruments announced the launch of its new line of Heavy-Duty Orbital Shakers today. ... (both analog and digital) for laboratory applications. These shakers are ideal for ...
(Date:7/16/2017)... ... July 16, 2017 , ... OHAUS Corporation, a leading ... of its new line of Rocking and Waving Shakers today. , Five New ... analog and digital) for laboratory applications in a variety of environmental conditions. Rocking ...
(Date:7/14/2017)... ... July 13, 2017 , ... ... test kit has received US FDA 510 (k) clearance for use on Siemens ... evaluates D-Dimer. Each VALIDATE® D-Dimer kit, prepared using the CLSI EP06-A “equal delta” ...
Breaking Biology Technology: