Navigation Links
Global research team decodes genome sequence of 90 chickpea lines

Hyderabad, India, and Shenzhen, China (28 January 2013) In a scientific breakthrough that promises improved grain yields and quality, greater drought tolerance and disease resistance, and enhanced genetic diversity, a global research team has completed high-quality sequencing of not one but ninety genomes of chickpea.

Nature Biotechnology, the highest ranked journal in the area of biotechnology, featured the reference genome of the CDC Frontier chickpea variety and genome sequence of 90 cultivated and wild genotypes from 10 different countries, as an online publication on 27 January 2013. The paper provides a map of the structure and functions of the genes that define the chickpea plant. It also reveals clues on how the sequence can be useful to crop improvement for sustainable and resilient food production toward improved livelihoods of smallholder farmers particularly in marginal environments of Asia and sub-Saharan Africa.

The research milestone was the result of years of genome analysis by the International Chickpea Genome Sequencing Consortium (ICGSC) led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) headquartered in Hyderabad, Andhra Pradesh India, involving 49 scientists from 23 organizations in 10 countries. ICRISAT is a member of the CGIAR Consortium.

The global research partnership succeeded in identifying an estimated 28,269 genes of chickpea after sequencing CDC Frontier, a kabuli (large-seeded) chickpea variety. Re-sequencing of additional 90 genotypes provided millions of genetic markers and low diversity genome regions that may be used in the development of superior varieties with enhanced drought tolerance and disease resistance. This will help chickpea farmers become more resilient to emerging challenges brought about by the threat of climate change. The genome map can also be used to harness genetic diversity by broadening the genetic base of cultivated chickpea genepool.

Chickpea is the second largest cultivated grain food legume in the world, grown in about 11.5 million hectares mostly by resource poor farmers in the semi-arid tropics. The highly nutritious, drought-tolerant chickpea contributes to income generation and improved livelihoods of smallholder farmers in African countries like Ethiopia, Tanzania and Kenya, and is crucial to the food security in India (being the largest producer, consumer and importer of the crop). Chickpea is also an important component of the pulse industry in Australia, Canada and USA.

"ICRISAT and its partners have once again demonstrated the power of productive partnerships by achieving this breakthrough in legume genomics," says Dr William Dar, Director General, ICRISAT. "Under the CGIAR Research Program (CRP) on Grain Legumes led by ICRISAT along with other CGIAR Consortium members and program as well as national partners, genome sequencing will play a crucial role in speeding up the development of improved varieties for smallholder farmer crops such as chickpea."

"In the face of the growing global hunger and poverty amid the threat of climate change, the chickpea genome sequence will facilitate the development of superior varieties that will generate more income and help extricate vulnerable dryland communities out of poverty and hunger for good, particularly those in the drylands of Asia and sub-Africa for whom ICRISAT and our partners are working," Dr Dar adds.

"Genetic diversity, an important prerequisite for crop improvement, is very limited and has been a serious constraint for chickpea improvement. This study will provide not only access to 'good genes' to speed up breeding, but also to genomic regions that will bring genetic diversity back from landraces or wild species to breeding lines," explains Dr Rajeev Varshney, coordinator of ICGSC and Director Center of Excellence in Genomics, ICRISAT.

"At the moment, it takes 4-8 years to breed a new chickpea variety. This genome sequence could reduce to half the time to breed for a new variety with market-preferred traits." he adds.

According to Professor Jun Wang, Director of BGI, "The collaboration between BGI and ICRISAT has yielded significant achievements in orphan crops research, like the pigeonpea genome before and now, the chickpea genome. I believe that our partnership will revolutionize research on orphan crops, which are key staple crops in many low-income countries and are extremely important to smallholder farmers worldwide. The chickpea genome sequencing project was undertaken by the ICGSC led by ICRISAT, the University of California-Davis (USA) and BGI-Shenzhen (China) with key involvement of national partners in India, USA, Canada, Spain, Australia, Germany and Czech Republic.

Contact: Jia Liu
BGI Shenzhen

Related biology news :

1. Global warming less extreme than feared?
2. Global Companion Diagnostic Market Worth $19.3 billion by 2023: What it Takes to Become a Major Companion Diagnostic Player
3. The global gene pool of the goat is seriously under threat
4. First global assessment of land and water grabbing published in national journal
5. NSF Supports GlobalNSF supports global research to advance science and engineering for sustainability
6. Global warming may have severe consequences for rare Haleakalā silverswords
7. Global warming may have severe consequences for rare Haleakalā silverswords
8. Global warming beneficial to ratsnakes
9. Jellyfish experts show increased blooms are a consequence of periodic global fluctuations
10. The findings between DNMs and autism provides global view of mutability on human diseases
11. The Sackler Institute unveils a global research agenda for nutrition science
Post Your Comments:
(Date:10/29/2015)... 29, 2015   MedNet Solutions , an innovative ... of clinical research, is pleased to announce that it ... (MHTA) as one of only three finalists for a ... Small and Growing" category. The Tekne Awards honor ... superior technology innovation and leadership. iMedNet™ ...
(Date:10/29/2015)... BOSTON , Oct. 29, 2015  Connected health ... phenomena driving the explosion of technology-enabled health and wellness, ... his new book, The Internet of Healthy ... apps, sensors or smartphones even existed, Dr. Kvedar, vice ... model of health care delivery, moving care from the ...
(Date:10/27/2015)... Germany , October 27, 2015 ... SMI,s Automated Semantic Gaze Mapping technology (ASGM) automatically maps ... SMI,s Eye Tracking Glasses , so that they ... BeGaze. --> Munich, Germany , ... (ASGM) automatically maps data from mobile eye tracking videos ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Telbec/ - ProMetic Life Sciences Inc. (TSX: PLI) (OTCQX: PFSCF) ... Laurin , President and Chief Executive Officer of ProMetic, will ... 27 th Annual Healthcare Conference to be held at ... st , at 8.50am (ET) and ProMetic,s management ... The presentation will be available live via a webcast accessible ...
(Date:11/24/2015)... Va. , Nov. 24, 2015 ... focused on discovering drugs for metabolic disorders, announced ... to its Board of Directors (BOD). Mr. ... officer of Human Genome Sciences (HGS), and also ... Organization. Jim Powers , Chairman and ...
(Date:11/24/2015)... and NEW YORK , November 24, ... investment by Bristol-Myers Squibb in a European ... Bristol-Myers Squibb Company in which the companies will work ... immuno-oncology and other areas of unmet medical need. The collaboration ... LSP 5, the latest LSP fund. This is the first ...
(Date:11/24/2015)... -- According to two new studies, fewer men are having ... many doctors, scientists, and public health experts have been pushing ... tests being done, will there be more men dying of ... "Despite the efforts made in regards to early detection ... cause of death in men, killing approximately 27,500 men this ...
Breaking Biology Technology: