Navigation Links
Glial cells assist in the repair of injured nerves
Date:1/28/2013

This press release is available in German.

Unlike the brain and spinal cord, the peripheral nervous system has an astonishing capacity for regeneration following injury. Researchers at the Max Planck Institute of Experimental Medicine in Gttingen have discovered that, following nerve damage, peripheral glial cells produce the growth factor neuregulin1, which makes an important contribution to the regeneration of damaged nerves.

From their cell bodies to their terminals in muscle or skin, neuronal extensions or axons in the peripheral nervous system are surrounded along their entire length by glial cells. These cells, which are known as Schwann cells, envelop the axons with an insulating sheath called myelin, which enables the rapid transmission of electrical impulses. Following injury to a peripheral nerve, the damaged axons degenerate. After a few weeks, however, they regenerate and are then recovered with myelin by the Schwann cells. For thus far unexplained reasons, however, the Schwann cells do not manage to regenerate the myelin sheaths completely. Thus the function of damaged nerves often remains permanently impaired and certain muscles remain paralysed in affected patients.

In a current research study, the scientists have succeeded in showing that the growth factor neuregulin1 supports nerve repair and the redevelopment of the myelin layer. This protein is usually produced by neurons and is localised on axons where it acts as an important signal for the maturation of Schwann cells and myelin formation. Because the axons rapidly degenerate after injury, the remaining Schwann cells lose their contact with the axons. They thus lack the neuregulin1 signal of the nervous fibres. "In the phase following nerve damage, in which the axons are missing, the Schwann cells must carry out many tasks without the help of axonal signals. If the Schwann cells cannot overcome this first major obstacle in the aftermath of nerve injury, the nerve cannot be adequately repaired," explains Ruth Stassart, one of the study authors.

To prevent this, the Schwann cells themselves take over the production of the actual neuronal signal molecule. After nerve damage, they synthesise the neuregulin1 protein until the axons have grown again. With the help of genetically modified mice, the researchers working on this study were able to show that the neuregulin1 produced in Schwann cells is necessary for the new maturation of the Schwann cells and the regeneration of the myelin sheath after injury. "In mice that lack the neuregulin1 gene in their Schwann cells, the already incomplete nerve regeneration process is extensively impaired," explains co-author Robert Fledrich.

The researchers would now like to examine in greater detail how the Schwann cells contribute to the complete repair of myelinated axons after nerve damage, so that this information can also be used for therapeutic purposes.


'/>"/>
Contact: Prof Klaus-Armin Nave
nave@em.mpg.de
49-551-389-9757
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Stem cells aid recovery from stroke
2. Patients own skin cells are transformed into heart cells to create disease in a dish
3. BUSM study shows potential of differentiated iPS cells in cell therapy without immune rejection
4. Black silicon can take efficiency of solar cells to new levels
5. Cells flock to heal wounds
6. Retrovirus in the human genome is active in pluripotent stem cells
7. Researchers show how cells DNA repair machinery can destroy viruses
8. Enzyme helps cancer cells avoid genetic instability
9. Mature T cells can switch function to better tackle infection
10. Quadruple helix DNA discovered in human cells
11. La Jolla Institute identifies molecular switch enabling immune cells to better fight disease
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Glial cells assist in the repair of injured nerves
(Date:2/1/2016)... Feb. 1, 2016  Today, the first day of ... plans to develop a first of its kind workplace ... IBM Watson. In the first application of ... IBM ), and Welltok will create a new ... with cognitive analytics, delivered on Welltok,s health optimization platform. ...
(Date:1/25/2016)... 2016   Unisys Corporation (NYSE: UIS ) today ... (JFK) International Airport, New York City , to ... attempting to enter the United States using ... pilot testing of the system at Dulles last year. ... JFK during January 2016. --> pilot testing of ...
(Date:1/21/2016)... , January 21, 2016 ... to a new market research report "Emotion Detection and ... Others), Software Tools (Facial Expression, Voice Recognition and ... - Global forecast to 2020", published by MarketsandMarkets, ... expected to reach USD 22.65 Billion by 2020, ...
Breaking Biology News(10 mins):
(Date:2/5/2016)... Feb. 5, 2016 Australian-US drug discovery and development ... the appointment of a new Chairman, Mr John O,Connor ... effective immediately. James Garner , has also ... and former Acting CEO, Mr Iain Ross , will ... --> James Garner , has also been formally ...
(Date:2/4/2016)... ... February 04, 2016 , ... ... Bloomsburg University’s Digital Forensics Club, takes place February 5-6 at the University’s ... 20+ speakers and activities such as workshops and competitions for ample networking, ...
(Date:2/4/2016)... N.J. , Feb. 4, 2016 ContraVir ... focused on the development and commercialization of targeted antiviral ... CEO & Investor Conference 2016, to be held February ... Source Capital Group,s 2016 Disruptive Growth & Healthcare Conference, ... on February 10-11, 2016. James Sapirstein , ...
(Date:2/4/2016)... ... ... Many of the engineers at FireflySci, Inc. have been manufacturing quartz and ... other cuvette manufacturers is their supercharged customer service and their extensive database of glass ... flow of inside information, they have recently revamped their manufacturing techniques to reduce lead ...
Breaking Biology Technology: