Navigation Links
Gladstone scientists identify key factors in heart cell creation
Date:4/26/2009

Scientists at the Gladstone Institute of Cardiovascular Disease have identified for the first time key genetic factors that drive the process of generating new heart cells. The discovery, reported in the current issue of the journal Nature, provides important new directions on how stem cells may be used to repair damaged hearts.

For decades, scientists were unable to identify a single factor that could turn nonmuscle cells into beating heart cells. Using a clever approach, the research team led by Benoit Bruneau, Ph.D., found that a combination of three genes could do the trick. This is the first time any combination of factors has been found to activate cardiac differentiation in mammalian cells or tissues.

"The heart has very little regenerative capacity after it has been damaged," said Dr. Bruneau. "With heart disease the leading cause of death in the Western world, this is a significant first step in understanding how we might create new cells to repair a damaged heart."

Two of the three genes encode proteins called transcription factors, which are master regulators that bind to DNA and determine which genes get activated or shut off. The two transcription factors, GATA4 and TBX5, cause human heart disease when mutated and also cooperate with each other to control other genes. When Dr. Bruneau and postdoctoral fellow Jun K. Takeuchi added different combinations of transcription factors to mouse cells, these two seemed important for pushing cells into heart cellsbut they were not enough.

"When we finally identified the key factor that could work with GATA4 and TBX5 to turn cells into beating heart cells, it was somewhat of a surprise to us," said Dr. Bruneau.

The surprising factor was a cardiac-specific protein called BAF60c, which helps determine whether transcription factors like GATA4 and TBX5 can even gain access to the DNA regions they were supposed to turn on or off. "Our previous studies had shown that chromatin remodeling complexes were important," said Dr. Bruneau. "Mice with lower levels of these complexes have severe heart defects and defective cardiac differentiation. These observations prompted us to look at Baf60c in heart differentiation."

The effect was dramatic. Addition of the three factors directed differentiation of mouse mesoderm, which normally has the potential to make bone, blood, muscle, heart, and other tissues, specifically into cardiac muscle cells (cardiomyocytes) that beat rhythmically, just like normal heart cells. In fact, even cells that normally contribute to the placenta could be induced to transform into beating cardiomyocytes.

"Together, these factors give us a potent mechanism to control cellular differentiation," said Dr. Bruneau. "This knowledge may help us to understand how to reprogram new cardiomyocytes for therapeutic purposes."


'/>"/>

Contact: Valerie Tucker
vtucker@gladstone.ucsf.edu
415-734-2019
Gladstone Institutes
Source:Eurekalert  

Related biology news :

1. Gladstone scientists reveal key enzyme in fat absorption
2. Gladstone scientists reveal that fat synthesizing enzyme is key to healthy skin and hair
3. Gladstone scientists create Wikipathways to foster research collaboration
4. Gladstone and Izumi Bio in partnership in regenerative medicine and cardiovascular disease
5. Gladstones Shinya Yamanaka wins prestigious Shaw Prize
6. Fire is important part of global climate change, report scientists
7. Scientists give a hand(edness) to the search for alien life
8. Caltech scientists show why anti-HIV antibodies are ineffective at blocking infection
9. Marine scientists warn of potential for spring, summer red tide outbreak in Gulf of Maine
10. Singapore scientists synthesize gold to shed light on cells inner workings
11. UNC study: Scientists identify chemical compound that may stop deadly brain tumors
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Gladstone scientists identify key factors in heart cell creation
(Date:5/23/2017)... Italy , May 23, 2017  Hunova, the first robotic gym ... trunk, has been officially launched in Genoa, Italy . ... Europe and the USA . The technology ... on the market by the IIT spin-off Movendo Technology thanks to a ... the Multimedia News Release, please click: ...
(Date:4/19/2017)... , April 19, 2017 ... its vendor landscape is marked by the presence of ... is however held by five major players - 3M ... these companies accounted for nearly 61% of the global ... leading companies in the global military biometrics market boast ...
(Date:4/11/2017)... Fla. , April 11, 2017 ... and secure authentication solutions, today announced that it ... Intelligence Advanced Research Projects Activity (IARPA) to develop ... Thor program. "Innovation has been a ... IARPA,s Thor program will allow us to innovate ...
Breaking Biology News(10 mins):
(Date:8/16/2017)... ... August 16, 2017 , ... Tunnell Consulting announced today that four ... ISPE Annual Meeting and Expo , to be held October 29 through November 1 ... “Driving innovation to advance patient therapies.” , The ISPE Annual Meeting and Expo will ...
(Date:8/16/2017)... ... 16, 2017 , ... Today, 3Bar Biologics Inc ., ... in funding from an impressive group of investors, including Rev1 Ventures, Maumee Ventures, ... this investment, 3Bar is broadening availability of its groundbreaking offering that uses naturally ...
(Date:8/15/2017)... 15, 2017 After spending the past two years building ... data collection, GeneFo now offers this platform to healthcare stakeholders (hospitals, ... support, adherence, and data collection vis a vis their members, under ... successful launch of this offer. ... GeneFo ...
(Date:8/15/2017)... Boston, MA (PRWEB) , ... August 15, 2017 , ... ... unmet need that has compromised these disciplines for more than half a century. ... cannot be counted. It is widely known that molecular tags developed for this ...
Breaking Biology Technology: