Navigation Links
Gladstone scientist finds new target for treating symptoms of Parkinson's disease

SAN FRANCISCO, CASeptember 8, 2011 A scientist at the Gladstone Institutes has identified how the lack of a brain chemical known as dopamine can rewire the interaction between two groups of brain cells and lead to symptoms of Parkinson's disease. This discovery offers new hope for treating those suffering from this devastating neurodegenerative disease.

In a paper being published online today in Neuron, Gladstone Investigator Anatol Kreitzer, PhD, identifies how the loss of dopamine alters the wiring of a small group of brain cells, kicking off a chain of events that eventually leads to difficulties controlling movementa hallmark of Parkinson's disease. More than a half-million people suffer from Parkinson's in the United States, including the boxer Muhammad Ali and the actor Michael J. Fox.

"The development of truly effective and well-tolerated therapies for Parkinson's has proven difficult," said Lennart Mucke, MD, who directs neurological disease research at the Gladstone Institutes, a leading and independent biomedical-research organization. Dr. Mucke is also a professor of neurology and neuroscience at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "Dr. Kreitzer's discovery sheds new light on the intricate processes that underlie motor problems in this disabling condition and will hopefully lead to the development of more effective medicines."

Normally, two types of brain cells called medium spiny neurons, or MSNs, work together to coordinate body movements, with one type acting like a gas pedal and the other as a brake. It has been thought that a reduction in dopamine, an important chemical in the brain, throws off the balance between the two opposing MSN forces, leading to problems with movement. But Dr. Kreitzer wondered if another factor might also be involved. To better understand the relationship between dopamine and MSNs in people with Parkinson's, Dr. Kreitzer artificially removed dopamine from the brains of laboratory mice and monitored the specific changes in the brain that followed.

Just as happens in humans, the mice without dopamine began to experience the motor symptoms of Parkinson's, including tremors, problems with balance and slowed movement. But Dr. Kreitzer found that decreased dopamine levels didn't just throw off the balance between the two types of MSNs, as was already known, but they also changed the interaction between MSNs and another group of neurons called fast-spiking neurons, or FSNs.

Dr. Kreitzer's experiments showed that under normal circumstances, FSNs connect to both types of MSNs in a similar way. But without dopamine, the signaling between the FSN circuits gets rewired and the neurons begin to target one type of MSN over the other. Dr. Kreitzer used computer simulations to show that this small shift disrupts the timing of MSN activity, which is key to normal movement. Ultimately, this rewiring may be an important factor in the development of Parkinson's motor problems.

"Our research has uncovered how an entirely different group of neurons can play a role in the development of Parkinson's disease symptoms," said Dr. Kreitzer, who is also an assistant professor of physiology and neurology at UCSF. "We hope to target the changes among these neurons directly with drug therapies, in order to help relieve some of Parkinson's most debilitating symptoms."


Contact: Anne Holden
Gladstone Institutes

Related biology news :

1. Gladstone scientists reveal that fat synthesizing enzyme is key to healthy skin and hair
2. Gladstone scientists reveal key enzyme in fat absorption
3. Gladstone scientists identify key factors in heart cell creation
4. Gladstones Shinya Yamanaka wins Lasker Award
5. Gladstone and Institute for Systems Biology collaborate on Huntingtons disease
6. Gladstones Shinya Yamanaka wins Kyoto prize
7. Gladstone scientists link hepatitis C virus infection to fat enzyme in liver cells
8. Gladstone scientists uncover mechanism for the major genetic risk factor of Alzheimers disease
9. Gladstone scientists identify genes involved in embryonic heart development
10. Gladstone to receive $5.6 million in federal funds to seek a cure for AIDS
11. Gladstone scientists offer new insight into the regulation of stem cells and cancer cells
Post Your Comments:
(Date:8/15/2017)... HAMPTON, Va. , Aug. 15 2017   ivWatch LLC ... effectiveness of intravenous (IV) therapy, today announced receipt of its ISO ... (QMS) developed by the International Organization for Standardization (ISO┬«). ... ivWatch Model 400 Continuous Monitoring device for ... "This ...
(Date:5/23/2017)... first robotic gym for the rehabilitation and functional motor sense evaluation of ... Italy . The first 30 robots will be available from June ... . The technology was developed and patented at the IIT laboratories and ... thanks to a 10 million euro investment from entrepreneur Sergio Dompè. ... ...
(Date:4/19/2017)... 19, 2017 The global military ... is marked by the presence of several large global ... by five major players - 3M Cogent, NEC Corporation, ... for nearly 61% of the global military biometric market ... the global military biometrics market boast global presence, which ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... New York, NY (PRWEB) , ... October 12, ... ... York Academy of Sciences today announced the three Winners and six Finalists of ... Awards are given annually by the Blavatnik Family Foundation and administered by the ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... United States multicenter, prospective clinical study that demonstrates the accuracy of the ... of identifying clinically significant acute bacterial and viral respiratory tract infections by ...
(Date:10/12/2017)... ... October 12, 2017 , ... AMRI, a global contract ... to improve patient outcomes and quality of life, will now be offering its ... attributed to new regulatory requirements for all new drug products, including the finalization ...
(Date:10/11/2017)... ... October 11, 2017 , ... At its ... announced Dr. Suneel I. Sheikh, the co-founder, CEO and chief research scientist of ... been selected for membership in ARCS Alumni Hall of Fame . ASTER ...
Breaking Biology Technology: