Navigation Links
Georgia Tech develops speedy software designed to improve drug development
Date:11/17/2011

Creating new, improved pharmaceuticals is sometimes very similar to cracking the code of a combination lock. If you have the wrong numbers, the lock won't open. Even worse, you don't know if your numbers are close to the actual code or way off the mark. The only solution is to simply guess a new combination and try again.

Similarly, when a newly created drug doesn't bind well to its intended target, the drug won't work. Scientists are then forced to go back to the lab, often with very little indication about why the binding was weak. The next step is to choose a different pharmaceutical "combination" and hope for better results. Georgia Tech researchers have now generated a computer model that could help change that blind process.

Symmetry-adapted perturbation theory (SAPT) allows scientists to study interactions between molecules, such as those between a drug and its target. In the past, computer algorithms that study these noncovalent interactions have been very slow, limiting the types of molecules that can be studied using accurate quantum mechanical methods. A research team headed by Georgia Tech Professor of Chemistry David Sherrill has developed a computer program that can study larger molecules (more than 200 atoms) faster than any other program in existence.

"Our fast energy component analysis program is designed to improve our knowledge about why certain molecules are attracted to one another," explained Sherrill, who also has a joint appointment in the School of Computational Science and Engineering. "It can also show us how interactions between molecules can be tuned by chemical modifications, such as replacing a hydrogen atom with a fluorine atom. Such knowledge is key to advancing rational drug design."

The algorithms can also be used to improve the understanding of crystal structures and energetics, as well as the 3D arrangement of biological macromolecules. Sherrill's team used the software to study the interactions between DNA and proflavine; these interactions are typical of those found between DNA and several anti-cancer drugs. The findings are published this month in the Journal of Chemical Physics.

Rather than selling the software, the Georgia Tech researchers have decided to distribute their code free of charge as part of the open-source computer program PSI4, developed jointly by researchers at Georgia Tech, Virginia Tech, the University of Georgia and Oak Ridge National Laboratory. It is expected to be available in early 2012.

"By giving away our source code, we hope it will be adopted rapidly by researchers in pharmaceuticals, organic electronics and catalysis, giving them the tools they need to design better products," said Sherrill.

Sherrill's team next plans to use the software to study the noncovalent interactions involving indinavir, which is used to treat HIV patients.


'/>"/>
Contact: Jason Maderer
maderer@gatech.edu
404-385-2966
Georgia Institute of Technology
Source:Eurekalert  

Related biology news :

1. Georgia residents: Investment in global health research is vital to states economy
2. Georgia Tech team helps decode newly sequenced strawberry genome
3. Georgia State receives $6.7 million grant for research center in health disparities
4. Georgia Tech awarded a $20M Center for Chemical Innovation from NSF and NASA
5. 3 Georgian leaders sign Vienna Declaration, strengthen call for science-based drug policy
6. Georgia Powers Green Energy Program Redesigned to Include More Solar Power
7. Penn, Georgia collaboration awarded $14.6 million to expand pathogen database
8. Georgia State researcher to use $1 million grant to improve computer models for fighting wildfires
9. New center at Georgia Tech aims to improve recovery of soldiers with severe injuries
10. Georgia goes bananas
11. Georgia Stem Cell Initiative meets on MCG campus Feb. 10
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Georgia Tech develops speedy software designed to improve drug development
(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... -- The Prostate Cancer Foundation (PCF) is pleased to announce 24 new ... prostate cancer. Members of the Class of 2016 were selected from a pool ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... STACS DNA Inc., ... Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a Field ... DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
Breaking Biology Technology: