Navigation Links
Georgetown researchers lead discovery expected to significantly change biomedical research

WASHINGTON, D.C.-- In a major step that could revolutionize biomedical research, scientists have discovered a way to keep normal cells as well as tumor cells taken from an individual cancer patient alive in the laboratory which previously had not been possible. Normal cells usually die in the lab after dividing only a few times, and many common cancers will not grow, unaltered, outside of the body.

This new technique, described today online in the American Journal of Pathology, could be the critical advance that ushers in a new era of personalized cancer medicine, and has potential application in regenerative medicine, says the study's senior investigator, Richard Schlegel, M.D., Ph.D., chairman of the department of pathology at Georgetown Lombardi Comprehensive Cancer Center, a part of Georgetown University Medical Center.

"Because every tumor is unique, this advance will make it possible for an oncologist to find the right therapies that both kills a patient's cancer and spares normal cells from toxicity," he says. "We can test resistance as well chemosensitivity to single or combination therapies directly on the cancer cell itself."

The research team, which also includes several scientists from the National Institutes of Health, found that adding two different substances to cancer and normal cells in a laboratory pushes them to morph into stem-like cells adult cells from which other cells are made.

The two substances are a Rho kinase (ROCK) inhibitor and fibroblast feeder cells. ROCK inhibitors help stop cell movement, but it is unclear why this agent turns on stem cell attributes, Schlegel says. His co-investigator Alison McBride, Ph.D., of the National Institute of Allergy and Infectious Diseases, had discovered that a ROCK inhibitor allowed skin cells (keratinocytes) to reproduce in the laboratory while feeder cells kept them alive.

The Georgetown researchers 13 investigators in the departments of pathology and oncology tried ROCK inhibitors and fibroblast feeder cells on the non-keratinocyte epithelial cells that line glands and organs to see if they had any effect. They found that both were needed to produce a dramatic effect in which the cells visibly changed their shape as they reverted to a stem-like state.

"We tried breast cells and they grew well. We tried prostate cells and their growth was fantastic, which is amazing because it is normally impossible to grow these cells in the lab," Schlegel says. "We found the same thing with lung and colon cells that have always been difficult to grow."

"In short, we discovered we can grow normal and tumor cells from the same patient forever, and nobody has been able to do that," he says. "Normal cell cultures for most organ systems can't be established in the lab, so it wasn't possible previously to compare normal and tumor cells directly."

The ability to immortalize cancer cells will also make biobanking both viable and relevant, Schlegel says. The researchers further discovered that the stem-like behavior in these cells is reversible. Withdrawing the ROCK inhibitor forces the cells to differentiate into the adult cells that they were initially. This "conditional immortalization" could help advance the field of regenerative medicine, Schlegel says.

However, the most immediate change in medical practice from these findings is the potential they have in "revolutionizing what pathology departments do," Schlegel says.

"Today, pathologists don't work with living tissue. They make a diagnosis from biopsies that are either frozen or fixed and embedded in wax," he says. "In the future, pathologists will be able to establish live cultures of normal and cancerous cells from patients, and use this to diagnose tumors and screen treatments. That has fantastic potential."

Contact: Karen Mallet
Georgetown University Medical Center

Related biology news :

1. Small bowel transplant, Crohns experts from around the world hosted by Georgetown
2. Little is understood about alcohols effect on fetal development, Georgetown researchers say
3. Georgetown Universitys Howard J. Federoff, M.D., Ph.D. receives Bernard Sanberg Memorial Award
4. 4 UC Riverside researchers receive national recognition
5. Researchers assess effects of a world awash in nitrogen
6. Researchers explain what makes granular material become solid
7. London researchers lead innovative new cancer treatment study
8. Antioxidant has potential in the Alzheimers fight, UGA researchers find
9. Control by the matrix: RUB researchers decipher the role of proteins in the cell environment
10. UH Seidman Cancer Center researchers present at American Society of Hematology Annual Meeting
11. Carnegie Mellon researchers use NMR to determine whether gold nanoparticles exhibit handedness
Post Your Comments:
(Date:11/11/2015)...   MedNet Solutions , an innovative SaaS-based eClinical technology ... pleased to announce that it will be a Sponsor of ... to be held November 17-19 in Hamburg ... of iMedNet , MedNet,s easy-to-use, proven and ... has been able to deliver time and cost savings of ...
(Date:11/4/2015)... New York , November 4, 2015 ... to a new market report published by Transparency Market ... Share, Growth, Trends and Forecast 2015 - 2022", the global ... of US$ 30.3 bn by 2022. The market is ... the forecast period from 2015 to 2022. Rising security ...
(Date:10/29/2015)... ARBOR, Mich. , Oct. 29, 2015 /PRNewswire/ ... Eurofins Genomics for U.S. distribution of its DNA ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq kit. ... to enable the preparation of NGS libraries for ... plasma for diagnostic and prognostic applications in cancer ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , November 26, 2015 ... Global Biobanking Market 2016 - 2020 report analyzes ... maintaining integrity and quality in long-term samples, minimizing ... long-term cost-effectiveness. Automation minimizes manual errors such as ... technical efficiency. Further, it plays a vital role ...
(Date:11/25/2015)... BRUSSELS , November 25, 2015 ... in cat and human plaque and pave the way for ... health problems in cats     ... the most commonly diagnosed health problems in cats, yet relatively ... until now. Two collaborative studies have been conducted by researchers ...
(Date:11/25/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS; TSX: AEZ) ... remain fundamentally strong and highlights the following developments: ... DSMB recommendation to continue the ZoptEC Phase 3 ... final interim efficacy and safety data , ... with heavily pretreated castration- and Taxane-resistant prostate cancer ...
(Date:11/25/2015)... , November 25, 2015 ... Report is a professional and in-depth study on ...      (Logo: ) , ... the industry including definitions, classifications, applications and industry ... for the international markets including development trends, competitive ...
Breaking Biology Technology: