Navigation Links
Geo-engineering against climate change
Date:12/19/2012

Numerous geo-engineering schemes have been suggested as possible ways to reduce levels of the greenhouse gas carbon dioxide in the atmosphere and so reduce the risk of global warming and climate change. One such technology involves dispersing large quantities of iron salts in the oceans to fertilize otherwise barren parts of the sea and trigger the growth of algal blooms and other photosynthesizing marine life. Photosynthesis requires carbon dioxide as its feedstock and when the algae die they will sink to the bottom of the sea taking the locked in carbon with them.

Unfortunately, present plans for seeding the oceans with iron fail to take into account several factors that could scupper those plans, according to Daniel Harrison of the University of Sydney Institute of Marine Science, NSW. Writing in the International Journal of Global Warming, Harrison has calculated the impact of iron seeding schemes in terms of the efficiency of spreading the iron, the impact it will most likely have on algal growth the tonnage of carbon dioxide per square kilometer of ocean surface that will be actually absorbed compared to the hypothetical figures suggested by advocates of the approach.

"If society wishes to limit the contribution of anthropogenic carbon dioxide to global warming then the need to find economical methods of carbon dioxide sequestration is now urgent," Harrison's new calculations take into account not only the carbon dioxide that will be certainly be sequestered permanently to the deep ocean but also subtracts the many losses due to ventilation, nutrient stealing, greenhouse gas production and the carbon dioxide emitted by the burning of fossil fuels to produce the iron salts and to power their transportation and distribution at sea.

His calculations suggest that on average, a single ocean iron fertilization will result in a net sequestration of just 10 tonnes of carbon per square kilometer sequestered for a century or more at a cost of almost US$500 per tonne of carbon dioxide. "Previous estimates of cost fail to recognize the economic challenge of distributing low concentrations of iron over large areas of the ocean surface and the subsequent loss processes that result in only a small net storage of carbon per square kilometer fertilized," says Harrison.

Others have addressed the maximum possible contribution by modeling and the generally accepted figure is around 1 billion tonnes of carbon, but those calculations do not take into account the losses discussed by Harrison. The real limit would be when the macro-nutrients are exhausted, what then is the flux of macro-nutrients into the iron limited regions per year? "Under ideal conditions the cost could be lowered and the efficiency increased but the availability of ideal conditions will be small," says Harrison.


'/>"/>
Contact: Albert Ang
press@inderscience.com
Inderscience Publishers
Source:Eurekalert

Related biology news :

1. UNH research adds to mounting evidence against popular pavement sealcoat
2. UC research: Tracking Lake Erie water snake in fight against invasive fish
3. Young researcher taking fight against global killer to the next level in Vietnam
4. AZM alternatives for apple growers against codling moth
5. Invisible helpers: How probiotic bacteria protect against inflammatory bowel diseases
6. Vitamin D supplements may protect against viral infections during the winter
7. New rearing system may aid sterile insect technique against mosquitoes
8. Some HDL, or good cholesterol, may not protect against heart disease
9. Biosensor illuminates compounds to aid fight against TB
10. Lab tests show arthritis drug effective against global parasite
11. Folic acid food enrichment potentially protective against childhood cancers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... Forecasts by Product Type (EAC), Biometrics, Card-Based ... & Logistics, Government & Public Sector, Utilities / Energy ... Nuclear Power), Industrial, Retail, Business Organisation (BFSI), Hospitality & ... for a definitive report on the $27.9bn Access Control ... ...
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
(Date:3/28/2017)... India , March 28, 2017 ... IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software ... Vertical, and Region - Global Forecast to 2022", published ... Billion in 2016 and is projected to reach USD ... between 2017 and 2022. The base year considered for ...
Breaking Biology News(10 mins):
(Date:6/27/2017)... ... June 27, 2017 , ... ... its patented GX-1 yeast production and fermentation process. The efficiencies created by ... on micro-organism technologies, most notably the ethanol industry wherein individual production plants are ...
(Date:6/26/2017)... ... June 26, 2017 , ... Third Wave Bioactives, LLC ... Sales Director, focused on leading new business development and ensuring quality customer experience. ... in the food ingredient industry in technical, marketing and sales roles. “Brett’s background working ...
(Date:6/23/2017)... ... June 23, 2017 , ... Biova, LLC., the leader in ... Biova’s Board of Directors. Dr. Henig will bring a wealth of scientific experience in ... as the Chief Technical and Scientific Officer of four major global companies in the ...
(Date:6/23/2017)... WI (PRWEB) , ... June ... ... announce the launch of a redesigned, easier-to-navigate website for all six of ... boards for physicians, nurses, dentists, pharmacists, physical and occupational therapists, and biotechnicians, ...
Breaking Biology Technology: