Navigation Links
Geo-engineering against climate change
Date:12/19/2012

Numerous geo-engineering schemes have been suggested as possible ways to reduce levels of the greenhouse gas carbon dioxide in the atmosphere and so reduce the risk of global warming and climate change. One such technology involves dispersing large quantities of iron salts in the oceans to fertilize otherwise barren parts of the sea and trigger the growth of algal blooms and other photosynthesizing marine life. Photosynthesis requires carbon dioxide as its feedstock and when the algae die they will sink to the bottom of the sea taking the locked in carbon with them.

Unfortunately, present plans for seeding the oceans with iron fail to take into account several factors that could scupper those plans, according to Daniel Harrison of the University of Sydney Institute of Marine Science, NSW. Writing in the International Journal of Global Warming, Harrison has calculated the impact of iron seeding schemes in terms of the efficiency of spreading the iron, the impact it will most likely have on algal growth the tonnage of carbon dioxide per square kilometer of ocean surface that will be actually absorbed compared to the hypothetical figures suggested by advocates of the approach.

"If society wishes to limit the contribution of anthropogenic carbon dioxide to global warming then the need to find economical methods of carbon dioxide sequestration is now urgent," Harrison's new calculations take into account not only the carbon dioxide that will be certainly be sequestered permanently to the deep ocean but also subtracts the many losses due to ventilation, nutrient stealing, greenhouse gas production and the carbon dioxide emitted by the burning of fossil fuels to produce the iron salts and to power their transportation and distribution at sea.

His calculations suggest that on average, a single ocean iron fertilization will result in a net sequestration of just 10 tonnes of carbon per square kilometer sequestered for a century or more at a cost of almost US$500 per tonne of carbon dioxide. "Previous estimates of cost fail to recognize the economic challenge of distributing low concentrations of iron over large areas of the ocean surface and the subsequent loss processes that result in only a small net storage of carbon per square kilometer fertilized," says Harrison.

Others have addressed the maximum possible contribution by modeling and the generally accepted figure is around 1 billion tonnes of carbon, but those calculations do not take into account the losses discussed by Harrison. The real limit would be when the macro-nutrients are exhausted, what then is the flux of macro-nutrients into the iron limited regions per year? "Under ideal conditions the cost could be lowered and the efficiency increased but the availability of ideal conditions will be small," says Harrison.


'/>"/>
Contact: Albert Ang
press@inderscience.com
Inderscience Publishers
Source:Eurekalert

Related biology news :

1. UNH research adds to mounting evidence against popular pavement sealcoat
2. UC research: Tracking Lake Erie water snake in fight against invasive fish
3. Young researcher taking fight against global killer to the next level in Vietnam
4. AZM alternatives for apple growers against codling moth
5. Invisible helpers: How probiotic bacteria protect against inflammatory bowel diseases
6. Vitamin D supplements may protect against viral infections during the winter
7. New rearing system may aid sterile insect technique against mosquitoes
8. Some HDL, or good cholesterol, may not protect against heart disease
9. Biosensor illuminates compounds to aid fight against TB
10. Lab tests show arthritis drug effective against global parasite
11. Folic acid food enrichment potentially protective against childhood cancers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... Fla. , April 11, 2017 ... and secure authentication solutions, today announced that it ... Intelligence Advanced Research Projects Activity (IARPA) to develop ... Thor program. "Innovation has been a ... IARPA,s Thor program will allow us to innovate ...
(Date:4/6/2017)... , April 6, 2017 Forecasts ... ANPR, Document Readers, by End-Use (Transportation & Logistics, Government ... Oil, Gas & Fossil Generation Facility, Nuclear Power), Industrial, ... Other) Are you looking for a definitive ... ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... NY (PRWEB) , ... October 12, 2017 , ... ... of Sciences today announced the three Winners and six Finalists of the 2017 ... given annually by the Blavatnik Family Foundation and administered by the New York ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... pharmaceutical and biotechnology industries to improve patient outcomes and quality of life, will ... analytical testing are being attributed to new regulatory requirements for all new drug ...
(Date:10/11/2017)... ... ... eye wash is a basic first aid supply for any work environment, but most personal ... rinse first if a dangerous substance enters both eyes? It’s one less decision, and likely ... dual eye piece. , “Whether its dirt and debris, or an acid or alkali, getting ...
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017  SkylineDx ... London (ICR) and University of Leeds ... to risk-stratify patients with multiple myeloma (MM), in a multi-centric ... The University of Leeds is the ... UK, and ICR will perform the testing services to include ...
Breaking Biology Technology: