Navigation Links
Genomes of citrus canker pathogens decoded
Date:4/23/2010

An international team of scientists from Brazil and the United States have completed the draft genome sequences of two strains of the Xanthomonas bacteria that cause citrus canker. Citrus canker, a belligerent disease that has plagued plant growers in parts of the United States, South America, and Asia, causes millions of dollars in lost revenue every year for farmers of citrus crops such as oranges, limes, and grapefruit. The genomic information obtained by these sequencing projects, which is described in the journal BMC Genomics*, suggests possible intervention targets for further experimental investigation.

Joo Setubal, Associate Professor at the Virginia Bioinformatics Institute and the Department of Computer Science at Virginia Tech, commented: "Citrus canker, which is found in different citrus plants, is effectively a single disease that is spawned by one of three strains of certain species of the Xanthomonas bacterium. The genome sequence of the most virulent of the citrus canker pathogens, Xanthomonas citri subsp. citri, was completed in 2002, and this was a big step forward in understanding the disease. The two new sequences will provide a welcome boost to citrus canker studies."

Citrus canker has proved difficult to combat despite concerted national disease eradication efforts. The disease produces lesions, blisters, and holes in the stems, leaves, and fruit of citrus crops. While the bacterial infection of the plant is not harmful to humans, the fruit becomes damaged and infection can lead to leaf loss and premature dropping of fruit. The availability of the genome sequences for the two additional bacterial strains that cause citrus canker means that scientists can now use key similarities and differences between the three related genomic sequences to zero in on the molecular basis of citrus canker.

Leandro Moreira of the Federal University of Ouro Preto, Brazil, remarked: "There is currently no such thing as a treatment for a plant disease like citrus canker. Infected trees, and others nearby, need to be cut down. Our work is another step in the direction of a more rational and cost-effective way to control and perhaps eradicate this disease."

Researchers have known for some time that the Xanthomonas bacteria inject certain proteins called effectors into the plant cells, bringing about citrus canker. Said Setubal: "Our findings have uncovered new effectors that are shared only by the three bacterial strains, and not by other Xanthomonas species. These effectors are excellent candidates for further studies."

Differences in the genome sequences of the three bacterial strains are also helping to shed light on why strain A (Xanthomonas citri subsp. citri) is more virulent than its strain B and C counterparts (Xanthomonas fuscans subsp. aurantifolii) and why it infects more citrus species. Said Boris Vinatzer, Assistant Professor in the Department of Plant Pathology, Physiology and Weed Science at Virginia Tech, who played a key role in the project: "Intriguingly, our sequence data revealed genes that are absent in the genome of the A strain but present in the genomes of Xanthomonas strains B and C. These genes may code for effector proteins that are recognized by some citrus species in a way that triggers a resistance response that interferes with disease development in these species. Such genes warrant close attention in future experiments."

In November 2006, The United States Department of Agriculture called for a new disease management plan to be devised for citrus canker after unprecedented hurricanes in Florida and other factors enabled the bacteria to jump significantly beyond the recommended cutting zone that scientists had thought necessary to prevent spread of the disease under normal weather conditions. It is hoped that the sequence information described in the new study will be used in the future to develop countermeasures and, perhaps, to help engineer citrus species that have long-lasting resistance to citrus canker.

Dean Gabriel, Professor in the Department of Plant Pathology at the University of Florida, Gainesville, who is not an author on the paper, remarked: "The availability of complete genome sequences of pathogens always greatly accelerates research because geneticists can then literally see all of the tools that the pathogen has in its arsenal, both defensive and offensive. This guides future research and control measures. Comparisons by the team behind this study have already resulted in the identification of specific candidate genes that may affect host range on citrus."


'/>"/>

Contact: Barry Whyte
whyte@vbi.vt.edu
540-231-1767
Virginia Tech
Source:Eurekalert

Related biology news :

1. International team compares 12 fruit fly genomes
2. Scientists decode genomes of diverse TB isolates
3. Latest Integrated Microbial Genomes data management system update release
4. Cold Spring Harbor Protocols features methods to screen genomes and analyze evolution
5. Cold Spring Harbor Protocols features methods for analyzing genomes and plant cells
6. New computational technique allows comparison of whole genomes as easily as whole books
7. After dinosaurs, mammals rise but their genomes get smaller
8. Genomes reveal bacterial lifestyles: Research
9. Genomes of 2 popular research strains of E. coli sequenced
10. Parasitic wasps newly sequenced genomes reveal new avenues for pest control
11. Singapore scientists join international study of 10,000 vertebrates genomes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... 17, 2017 NXT-ID, Inc. (NASDAQ: NXTD ... filing of its 2016 Annual Report on Form 10-K on Thursday ... ... available in the Investor Relations section of the Company,s website at ... website at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... 2017 Research and Markets has announced the ... to their offering. ... eye tracking market to grow at a CAGR of 30.37% during ... Market 2017-2021, has been prepared based on an in-depth market analysis ... and its growth prospects over the coming years. The report also ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute ... Allen Cell Explorer: a one-of-a-kind portal and dynamic digital ... 3D imaging data, the first application of deep learning ... human stem cell lines and a growing suite of ... platform for these and future publicly available resources created ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... At its ... announced Dr. Suneel I. Sheikh, the co-founder, CEO and chief research scientist of ... been selected for membership in ARCS Alumni Hall of Fame . ASTER ...
(Date:10/11/2017)... USA (PRWEB) , ... October 11, 2017 , ... ComplianceOnline’s ... take place on 7th and 8th June 2018 in San Francisco, CA. The Summit ... as well as several distinguished CEOs, board directors and government officials from around the ...
(Date:10/11/2017)... ROTTERDAM, the Netherlands and LAGUNA HILLS, ... that The Institute of Cancer Research, London ... will use MMprofilerâ„¢ with SKY92, SkylineDx,s prognostic tool to risk-stratify ... high-risk trial known as MUK nine . The University ... this trial, which is partly funded by Myeloma UK, and ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh ... orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of ... SBT-100 is able to cross the cell membrane and bind intracellular STAT3 and ...
Breaking Biology Technology: