Navigation Links
Genome study shines light on genetic link to height
Date:9/2/2007

It became clear nearly a century ago that many genes likely influence how tall a person grows, though little progress, if any, has followed in defining the myriad genes. Now an international research team brings light to this age-old question by pinpointing a genetic variant associated with human height the first consistent genetic link to be reported.

The findings, published in the September 2 advance online edition of Nature Genetics, stem from a large-scale effort led by scientists at the Broad Institute of Harvard and MIT, Childrens Hospital Boston, the University of Oxford and Peninsula Medical School, Exeter. Using a new genome-wide association method, the research team searched the human genome for single letter differences in the genetic code that appear more often in tall individuals compared to shorter individuals. By analyzing DNA from nearly 35,000 people, the researchers zeroed in on a difference in the HMGA2 gene a C written in the DNA code instead of a T. Inheriting the C-containing copy of the gene often makes people taller: one copy can add about a half centimeter in height while two copies can add almost a full centimeter.

This is the first convincing result that explains how DNA can affect normal variation in human height, said co-senior author Joel Hirschhorn, an associate member of the Broad Institute, a pediatric endocrinologist at Childrens Hospital Boston, and an associate professor of genetics at Harvard Medical School. Because height is a complex trait, involving a variety of genetic and non-genetic factors, it can teach us valuable lessons about the genetic framework of other complex traits such as diabetes, cancer and other common human diseases.

In addition to being a textbook example of a complex trait, height is a common reason children are referred to medical specialists. Although short stature by itself typically does not signal cause for concern, delayed growth can sometimes reflect a serious underlying health condition. By defining the genes that normally affect stature, we might someday be able to better reassure parents that their childs height is within the range predicted by DNA, rather than a consequence of disease, said Hirschhorn.

Nearly 90% of the variation in height among most human populations can be attributed to DNA. The remainder is due to environmental and lifestyle factors, such as nutrition. Although a few genes have been uncovered through studies of rare, single-gene stature disorders, most do not seem to be associated with height in the general population. Recent advances, including the completion of the HapMap project and the availability of large-scale research tools, enabled the scientists to take a systematic approach to understand how common genetic differences can impact a persons height.

The results of the research team, which also includes co-senior authors Timothy Frayling of the Peninsula Medical School, Exeter and Mark McCarthy of the University of Oxford, spring from data made available in two recent genome-wide association studies of type 2 diabetes. The studies, one led by the Diabetes Genetics Initiative and the other by the Wellcome Trust Case Control Consortium, involved nearly 5,000 patients who generously volunteered DNA samples as well as pertinent clinical information, such as height and weight.

After scrutinizing the initial data, the scientists identified a single letter change known as a single nucleotide polymorphism or SNP in the HMGA2 gene as the most promising result. They collaborated with additional researchers to study this SNP through a second phase of analysis that encompassed nearly 30,000 individuals: adults and children from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Exeter Family Study of Childhood Health (EFSOCH), European adults taking part in a study of type 2 diabetes risk (UKT2D GCC), Finnish individuals participating in the FINRISK1997 health survey, and a set of tall and short European American and Polish adults assembled for studies of height. This two-pronged approach enabled co-first author Guillaume Lettre, a researcher at the Broad Institute and Childrens Hospital Boston, and his colleagues to convincingly prove that the DNA variation in HMGA2 influences height.

The genomic find, though, is not the only indication that HMGA2 affects height. Previous studies in mice and humans revealed that a handful of rare stature disorders result from severe mutations in the gene. Taken together, the findings provide strong evidence for a role for HMGA2 in height. However, the identified SNP accounts for just 0.3% of the normal variability in human stature, which means there are probably many others yet to be found. To do this, researchers will need to study even larger groups of individuals.

Unlike most other complex traits, height is something that can be easily defined and measured in very large numbers of people, said Hirschhorn. Soon the scientific community will have access to many more large-scale genomic data sets, making it feasible to identify additional genes involved in height.

While surprisingly little is known about how genes hardwire humans for growth, some initial clues have already surfaced as a result of the HMGA2 discovery. The gene is active in the first months of fetal growth and shuts off shortly before birth, suggesting it orchestrates growth-related events early in human development. Moreover, it appears to influence the overall longitudinal growth of the skeleton, as scientists found that the T-to-C change in the genes DNA sequence correlates with an increased length of both the limbs and spine in young children. HMGA2 has also been implicated in certain forms of cancer. Thus, further studies may help dissect the relationship between normal growth and the deranged growth central to cancer.


'/>"/>
Contact: Nicole Davis
ndavis@broad.mit.edu
617-258-0952
Broad Institute of MIT and Harvard
Source:Eurekalert

Related biology news :

1. Man and mouse share genome structures
2. Genome of deadly amoeba shows surprising complexity, evidence of lateral gene transfer
3. Affymetrix Unveils Plans to Double Plant and Animal Genome Microarray Offering
4. Whole genome fine map of rice completed
5. Genome-wide mouse study yields link to human leukemia
6. Study finds more than one-third of human genome regulated by RNA
7. A bacterial genome reveals new targets to combat infectious disease
8. Scientists decipher genome of fungus that can cause life-threatening infections
9. New Study from Affymetrix Laboratories Points to Changing View of How Genome Works
10. Highly adaptable genome in gut bacterium key to intestinal health
11. Multiple Campylobacter Genomes Sequenced
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/2/2017)... , March 2, 2017 Australian stem cell ... (ASX: CYP), has signed an agreement with the Monash ... Monash Biomedicine Discovery Institute and Department of Pharmacology at ... a further preclinical study to support the use of ... asthma.  Asthma is a chronic, long ...
(Date:2/28/2017)... , February 28, 2017 News solutions for ... ... from 14 to 16 March, Materna will present ... show how seamless travel is a real benefit for passengers. ... biometrics to their passenger touch point solutions to take passengers through ...
(Date:2/26/2017)... Feb. 25, 2017  Securus Technologies, a leading ... for public safety, investigation, corrections and monitoring, announces ... Reentry. "Too often, too many offenders ... county jails are trying to tackle this ongoing ... friends and family members. While significant steps are underway, ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... , March 23, 2017 In ... four equities in the Biotech industry: Sangamo Therapeutics Inc. ... Inc. (NYSE MKT: SYN), and Regulus Therapeutics Inc. (NASDAQ: ... , 2017, Credit Suisse upgraded its rating on Pharmaceuticals/Biotechnology to "Overweight" from ... their free report at: ...
(Date:3/22/2017)... March 22, 2017  Ascendis Pharma A/S (Nasdaq: ... TransCon technology to address significant unmet medical needs ... the full year ended December 31, 2016. ... our company as we broadened our pipeline and ... rare disease company with an initial focus on ...
(Date:3/22/2017)... LEXINGTON, Mass. , March 22, 2017   ... collections, today announced that Doctors Pathology Service ... mid-Atlantic region of the United States ... the Delaware Health Information Network (DHIN) to ... researchers. The novel program, announced in ...
(Date:3/22/2017)... 22, 2017   Boston Biomedical , an industry ... to target cancer stemness pathways, today announced its Board ... as Chief Executive Officer, effective April 24, 2017. ... Li , M.D., FACP, who has led Boston Biomedical ... his leadership, Boston Biomedical has grown from a "garage ...
Breaking Biology Technology: