Navigation Links
Genome mapping technique speeds process of finding specific genes
Date:3/24/2010

WEST LAFAYETTE, Ind. - A Purdue University scientist was part of a global team that has demonstrated a specialized mapping technique that could speed work in genomic fields by quickly finding genetic associations that shape an organism's observable characteristics.

Using plants from 93 different Arabidopsis thaliana populations, a team led by the Gregor Mendel Institute of Plant Biology in Austria was able to find genetic associations among multiple phenotypes, or traits, suggesting that the same genes or closely related genes controlled those traits. David E. Salt, a Purdue professor of plant biology and co-author of a Nature paper on the study released Wednesday (March 24), said the ability to find these types of genetic links could speed scientists' ability to find and isolate genes and understand their function.

"This may show that multiple phenotypes are being controlled by a specific region of the genome," Salt said. "It helps us understand the mechanisms."

A traditional search for a gene responsible for a particular characteristic requires using plants that have been phenotyped, or identified by characteristics. They are then crossed with others, and the offspring are phenotyped.

Scientists then check for similarities in offsprings' genes with the desired trait. The process can be painstaking and time consuming because many thousands of individuals may need to be checked, Salt said.

Genome-wide association mapping compares the sequence of DNA in genomes of many individual plants or animals to find similarities that narrow the scope of the search for a particular gene.

"We can look for a region in the genome that is in common among the individuals," Salt said. "For plant biologists, it's a much more efficient way of getting to genes. And for animal biologists, where making test crosses is more difficult, this is critical."

In this study, specific differences in DNA, called single nucleotide polymorphisms, or SNPs, were compared at 250,000 sites across the genomes of many individuals. The genomes were matched up against specific traits for each individual in order to find SNPs that are associated with the trait of interest. If scientists were looking for plants that produce high seed yields, for example, they would compare the genomes of plants that have a range of seed yields. The places where the genomes match in individuals with high seed yields are possible locations of sought-after genes.

Genome-wide association mapping is a faster process because fewer plants - usually in the hundreds - need to be grown and phenotyped. Finding genetic associations among multiple phenotypes could reveal more information about how those characteristics might be connected.

Of the 107 phenotypes used in the research, Salt was responsible for phenotyping the plants for 18 characteristics, which focused on nutrient and micronutrient content. He said the next step in the research would be to test those associations to determine the genes responsible for particular plant characteristics.


'/>"/>

Contact: Brian Wallheimer
bwallhei@purdue.edu
765-496-2050
Purdue University
Source:Eurekalert

Related biology news :

1. Unravelling new complexity in the genome
2. Conquest of land began in shark genome
3. One species entire genome discovered inside anothers
4. Genome study shines light on genetic link to height
5. First individual genome sequence published
6. Ultraconserved elements in the genome: Are they indispensable?
7. $10 million gift to support cutting-edge epigenome center at USC
8. Fungus genome yielding answers to protect grains, people and animals
9. Which came first, the chicken genome or the egg genome?
10. Researchers expand efforts to explore functional landscape of the human genome
11. Genome update defines landscape of breast and colon cancers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
Breaking Biology News(10 mins):
(Date:5/27/2016)... City, Missouri (PRWEB) , ... May 27, 2016 , ... ... Development Manager, Turf and Ornamental Products. , In his 15-year career with PBI-Gordon, Dave ... Herbicide Product Manager, where he was integral in the development and launch of many ...
(Date:5/27/2016)... NEW YORK , May 27, 2016 ... state, but investors playing in this space know that volatility ... this morning,s featured companies on ActiveWallSt.com: Synta Pharmaceuticals Corp. (NASDAQ: ... CTIC ), Lpath Inc. (NASDAQ: LPTN ), and ... now and gain access to the technical alerts for these ...
(Date:5/26/2016)... , May 26, 2016 Q BioMed ... it will be a featured presenter at the 5th Annual ... New York City at the Grand Hyatt ... , Q BioMed Inc. CEO, is scheduled to begin at ... the company,s business strategy, recent developments and outline milestones for ...
(Date:5/26/2016)... ... 26, 2016 , ... Kinder Scientific (KinderScientific.com), a leading animal ... the Company for the future. Kinder Scientific announces restructured ownership and additional ... appointed Chairman of the Board, Curtis D. Kinghorn has been appointed CEO/President and ...
Breaking Biology Technology: