Navigation Links
Genome mapping technique speeds process of finding specific genes
Date:3/24/2010

WEST LAFAYETTE, Ind. - A Purdue University scientist was part of a global team that has demonstrated a specialized mapping technique that could speed work in genomic fields by quickly finding genetic associations that shape an organism's observable characteristics.

Using plants from 93 different Arabidopsis thaliana populations, a team led by the Gregor Mendel Institute of Plant Biology in Austria was able to find genetic associations among multiple phenotypes, or traits, suggesting that the same genes or closely related genes controlled those traits. David E. Salt, a Purdue professor of plant biology and co-author of a Nature paper on the study released Wednesday (March 24), said the ability to find these types of genetic links could speed scientists' ability to find and isolate genes and understand their function.

"This may show that multiple phenotypes are being controlled by a specific region of the genome," Salt said. "It helps us understand the mechanisms."

A traditional search for a gene responsible for a particular characteristic requires using plants that have been phenotyped, or identified by characteristics. They are then crossed with others, and the offspring are phenotyped.

Scientists then check for similarities in offsprings' genes with the desired trait. The process can be painstaking and time consuming because many thousands of individuals may need to be checked, Salt said.

Genome-wide association mapping compares the sequence of DNA in genomes of many individual plants or animals to find similarities that narrow the scope of the search for a particular gene.

"We can look for a region in the genome that is in common among the individuals," Salt said. "For plant biologists, it's a much more efficient way of getting to genes. And for animal biologists, where making test crosses is more difficult, this is critical."

In this study, specific differences in DNA, called single nucleotide polymorphisms, or SNPs, were compared at 250,000 sites across the genomes of many individuals. The genomes were matched up against specific traits for each individual in order to find SNPs that are associated with the trait of interest. If scientists were looking for plants that produce high seed yields, for example, they would compare the genomes of plants that have a range of seed yields. The places where the genomes match in individuals with high seed yields are possible locations of sought-after genes.

Genome-wide association mapping is a faster process because fewer plants - usually in the hundreds - need to be grown and phenotyped. Finding genetic associations among multiple phenotypes could reveal more information about how those characteristics might be connected.

Of the 107 phenotypes used in the research, Salt was responsible for phenotyping the plants for 18 characteristics, which focused on nutrient and micronutrient content. He said the next step in the research would be to test those associations to determine the genes responsible for particular plant characteristics.


'/>"/>

Contact: Brian Wallheimer
bwallhei@purdue.edu
765-496-2050
Purdue University
Source:Eurekalert

Related biology news :

1. Unravelling new complexity in the genome
2. Conquest of land began in shark genome
3. One species entire genome discovered inside anothers
4. Genome study shines light on genetic link to height
5. First individual genome sequence published
6. Ultraconserved elements in the genome: Are they indispensable?
7. $10 million gift to support cutting-edge epigenome center at USC
8. Fungus genome yielding answers to protect grains, people and animals
9. Which came first, the chicken genome or the egg genome?
10. Researchers expand efforts to explore functional landscape of the human genome
11. Genome update defines landscape of breast and colon cancers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
(Date:3/30/2017)... ANGELES , March 30, 2017  On April ... Hack the Genome hackathon at Microsoft,s ... exciting two-day competition will focus on developing health and ... Hack the Genome is the ... been tremendous. The world,s largest companies in the genomics, ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... BARBARA, CALIFORNIA (PRWEB) , ... October 10, 2017 ... ... management, technological innovation and business process optimization firm for the life sciences and ... BoxWorks conference in San Francisco. , The presentation, “Automating GxP Validation ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer television series ... 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With global population ... challenge of how to continue to feed a growing nation. At the same time, ...
(Date:10/9/2017)... , ... October 09, 2017 ... ... on October 5, 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® ... gold standard, video EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface ...
(Date:10/7/2017)...  The 2017 Nobel Prize in Chemistry recognizes ... Joachim Frank and Richard Henderson ... (cryo-EM) have helped to broaden the use ... The winners worked with systems manufactured by Thermo ... resolved, three-dimensional images of protein structures that lead ...
Breaking Biology Technology: