Navigation Links
Genome inversion gives plant a new lifestyle

DURHAM, N.C. The yellow monkeyflower, an unassuming little plant that lives as both a perennial on the foggy coasts of the Pacific Northwest and a dry-land annual hundreds of miles inland, harbors a significant clue about evolution.

Duke graduate student and native northern Californian David Lowry had become interested in how a single species could live such different lifestyles. He set out to find a gene or genes that would account for the monkeyflower (Mimulus guttatus) being a lush, moisture-loving, salt-tolerant perennial on the coast, but a shorter, faster-flowering, drought-tolerant annual inland.

What he found instead was that a large chunk of the plant's genome 2.2 million letters of DNA and 350 genes are working differently in each ecotype of the plant. The difference is called a genetic inversion, a long piece of DNA that has been clipped out of a chromosome at both ends and then reinserted essentially upside down.

"When you look at one plant species across a broad landscape with lots of different habitat conditions, you find differences in the genes from one place to the next," Lowry said. "The cause of these differences has been a source of contention among evolutionary biologists for decades as they've tried to figure out what mechanisms drive the origin of species."

A single species with a broad range of habitats like the monkeyflower can be expected to have a suite of genes available to help it adapt to the various conditions it would encounter within its range. But depending on where an individual plant finds itself, some of those genes aren't being used.

In the case of the monkeyflower, Lowry found that each ecotype has a large suite of adaptive genes carried within the inversion. The inland plants set about producing flowers and getting their reproduction done in the spring, before hot, dry weather arrives. The coastal plants grow a lot more foliage and flower much later without the threat of drought, leaving them better suited to overwinter and to compete for space in a riotous plant environment. Lowry showed that those adaptations lie within the inverted section: transplanted to the other environment, neither variety does well.

The inversion can be a driver of speciation. In the process of gene-shuffling during the formation of sex cells (known as recombination), an inverted region can't successfully swap genes with its counterpart chromosome precisely because it's backwards. Lowry's first clue was that crosses between the two ecotypes didn't produce any recombinations in the part of the chromosome where the inversion was eventually found.

Because they aren't reshuffled by recombination, the genes within the inverted stretch end up traveling through time as one large block of genes, rather than an assortment. "So the inversion sort of works like a super gene," Lowry said.

Inversions are particularly interesting to biologists who are trying to figure out how one species becomes two. Notably, many significant inversions have been identified between humans and chimpanzees. And one of Lowry's Duke advisors, biologist Mohamed Noor, has found inversions help separate new species of fruitflies.

"Inversions are going to be seen as an important part of local adaptation as more people look for them," said Duke biology professor John Willis, who was Lowry's thesis advisor and co-author. "This is an extremely important argument and could explain a lot of the inversions that people are finding."

To prove the adaptations were in the inversions, Lowry painstakingly put the annual spelling of the inversion into perennial plants and the perennial spelling into the annuals through a long series of crosses in the greenhouses at Duke. Then he took 1,600 of these carefully edited plants out to test plots across several habitats in the Pacific Northwest to see how they'd do in the 2009 growing season. "It was a huge amount of work," Willis said.

Not only will these hardiness differences help drive the two ecotypes apart, their different flowering times will help prevent pollen-swapping that would mingle their genes. With time, they should become separate species, "depending on which definition of species you want to use," Lowry quickly added. "They're not full species, but they're going in that direction."

This is the first time in a natural setting that anyone has shown inversions directly affecting adaptation to local conditions and a shift between annual and perennial life history in plants. "We actually showed through experimentation that the inversion contributes to adaptation and reproductive isolation," Lowry said.

It took Lowry five years of meticulous lab work repetitively cross-breeding the plants and tromping around in mud to nail the monkeyflower inversions down and prove they accounted for the lifestyle differences.

For his efforts, he got a successful dissertation and a 2010 Ph.D. in biology, as well as a publication in the Sept. 28 edition of PLoS Biology with his adviser, associate professor of biology John Willis.


Contact: Karl Leif Bates
Duke University

Related biology news :

1. NC State researchers get to root of parasite genome
2. Worm genome offers clues to evolution of parasitism
3. Complete Genomics launches, becomes worlds first large-scale human genome sequencing company
4. Diatom genome helps explain success in trapping excess carbon in oceans
5. Washington University scientists first to sequence genome of cancer patient
6. Research consortium to sequence turkey genome
7. DOE Joint Genome Institute completes soybean genome
8. Breast cancer genome shows evolution, instability of cancer
9. In lung cancer, silencing one crucial gene disrupts normal functioning of genome
10. Gene switch sites found mainly on shores, not just islands of the human genome
11. Genome Medicine: Bridging the gap between research and clinical practice
Post Your Comments:
(Date:6/15/2016)... June 15, 2016 Transparency ... titled "Gesture Recognition Market by Application Market - Global Industry Analysis ... 2024". According to the report, the  global gesture recognition ... 2015 and is estimated to grow at a ... by 2024.  Increasing application of gesture ...
(Date:6/9/2016)... , June 9, 2016 ... deploy Teleste,s video security solution to ensure the safety of ... during the major tournament Teleste, an ... systems and services, announced today that its video security solution ... to back up public safety across the country. The ...
(Date:6/3/2016)... Das DOTM (Department ... hat ein 44 Millionen $-Projekt ... einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an Decatur ... Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale Anbieter ... aber Decatur wurde als konformste und innovativste ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created 4Sight Medical ... to the healthcare market. The company's primary focus is on new product introductions, ... strategies that are necessary to help companies efficiently bring their products to market. ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... June 24, 2016  Regular discussions on a range of ... between the two entities said Poloz. Speaking at ... Ottawa , he pointed to the country,s inflation target, ... government. "In certain ... institutions have common economic goals, why not sit down and ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers ... 5000 and the 6000i models are higher end machines that use the more unconventional ... spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci has ...
Breaking Biology Technology: