Navigation Links
Genetics work could lead to advances in fertility for women
Date:10/22/2010

Princeton scientists have identified genes responsible for controlling reproductive life span in worms and found they may control genes regulating similar functions in humans.

The work suggests that someday researchers may be able to develop ways to maintain fertility in humans, allowing women who want to delay having children to preserve that capacity and extend their reproduction, and to prevent maternal age-related birth defects.

The research, led by Coleen Murphy, an assistant professor of molecular biology and the Lewis-Sigler Institute for Integrative Genomics, was published in the Oct. 15 edition of Cell.

"Could you give someone a drug or supplement when they are in their mid-30s that would keep their oocytes (immature egg cells) healthy? That's the goal," Murphy said. The approach, she said, would be similar to the regimen of daily allotments of folic acid taken by pregnant women to prevent the development of spina bifida in the fetus.

In humans, reproductive aging causes problems in the quality of the eggs produced about a decade before the egg supply runs out. This can lead to miscarriages and worries about chromosomal abnormalities. "In humans, this suggests that quality, not quantity, is the limiting factor," Murphy said. "The question was whether the same is true in worms. And the answer is yes."

"We have found that there are many shared genes between worms and humans in terms of their reproductive qualities," Murphy said. "So this isn't just about worms and how they reproduce."

In the study, the researchers sought to understand what happens in roundworms, C. elegans, as reproductive aging sets in. They compared the activity levels of genes in normal roundworms with those of mutant roundworms that produce eggs until old age. They found that a complex of genes important to human reproduction is more active in the second group. These genes affect the ability of eggs to be fertilized, the proper segregation of chromosomes, DNA damage resistance and the very shape of the eggs.

Both humans and roundworms reproduce for about one-third to one-half of their lives. But there are differences. Humans' total egg supply is present at birth, while roundworms produce them during their lives. And, in the case of the mutant roundworms, their reproductive span is longer than their counterparts, but their lifespan is the same. As a result, 13-day-old mutant worms are still reproducing though their bodies have decayed to the point that they are unable to lay the fertilized eggs.

Murphy likes roundworms because their life cycle makes it easy to study them for aging issues. They live for about two weeks. It takes two and a half days for them to grow from egg to adult. Then they reproduce for about four days. If their life span or reproductive cycle is doubled through genetic manipulation, they can still be monitored in a reasonable amount of time for a scientist's purposes.

Murphy's studies of C. elegans have led to significant insights into how to control the aging process. In May, for example, a research team led by Murphy reported it had found the first evidence that decreasing caloric intake and tweaking the activity of the hormone insulin in roundworms has an impact on cognitive function. The findings have implications for the development of treatments that simultaneously help people live longer and prevent the devastating losses in memory that so often occur with age.

C. elegans are one of the simplest organisms that exist with a nervous system. Scientists, as a result, have already mapped out every neuron in their bodies. They were the first multicellular organisms to have their genomes completely sequenced.

The bacteria-gobbling worms, which are about 1 millimeter long, live in temperate soil environments like gardens and compost heaps. Scientists like to study them because they are cheap to breed and can be frozen. Though multicellular, the worms are simple enough to be studied in great detail. They are transparent, allowing scientists to watch their development in such detail that they have been able to track the fate of every cell produced at birth.


'/>"/>

Contact: Kitta MacPherson
kittamac@princeton.edu
609-258-5729
Princeton University
Source:Eurekalert

Related biology news :

1. Studies provide new insights into the genetics of obesity and fat distribution
2. Light workout: Stanford scientists use optogenetics to effectively stimulate muscle movement in mice
3. Hard-wired for chocolate and hybrid cars? How genetics affect consumer choice
4. Interviews bring genetics to life in new book
5. OU study on genetics in fruit flies leads to new method for understanding brain function
6. American Society of Human Genetics to host 60th Annual Meeting in Washington, D.C.
7. Largest ever epigenetics project launched
8. Survey says: Genetics affect whether were willing to take surveys
9. Genetics underlie formation of bodys back-up bypass vessels
10. Economic status, genetics together influence psychopathic traits
11. Study finds diet and alcohol alter epigenetics of breast cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/15/2017)... HAMPTON, Va. , Aug. 15 2017   ivWatch LLC ... effectiveness of intravenous (IV) therapy, today announced receipt of its ISO ... (QMS) developed by the International Organization for Standardization (ISO┬«). ... ivWatch Model 400 Continuous Monitoring device for ... "This ...
(Date:5/23/2017)... 2017  Hunova, the first robotic gym for the rehabilitation and functional ... in Genoa, Italy . The first 30 robots will ... USA . The technology was developed and patented at ... IIT spin-off Movendo Technology thanks to a 10 million euro investment from ... click: ...
(Date:4/19/2017)... New York , April 19, 2017 ... competitive, as its vendor landscape is marked by the ... the market is however held by five major players ... Safran. Together these companies accounted for nearly 61% of ... of the leading companies in the global military biometrics ...
Breaking Biology News(10 mins):
(Date:9/20/2017)... Palo Alto, CA (PRWEB) , ... September 20, ... ... and public interest organization focused on molecular manufacturing and other transformative technologies, announced ... categories, one for Experiment and the other for Theory in nanotechnology/molecular manufacturing. , ...
(Date:9/19/2017)... ... 19, 2017 , ... Participants of this educational webinar will ... Along with the advantages and disadvantages of ductless, filtered fume hoods, they will ... laboratory. , Attendees will learn from an industry expert about the different types ...
(Date:9/19/2017)... ... September 19, 2017 , ... The new and improved Oakton® pocket ... testers even stand upright with a new cap design that is versatile, functional and ... field who need to test water quality. , The Oakton pocket testers have many ...
(Date:9/19/2017)... (PRWEB) , ... September 19, 2017 , ... ... is pleased to announce the recipients of its 2017 Science Student Award. The ... leadership qualities, and involvement with community service defray the costs of obtaining their ...
Breaking Biology Technology: