Navigation Links
Genetic variants of USF1 are associated with the increased risk for cardiovascular disease
Date:4/7/2008

Cardiovascular diseases (CVD) are major contributors to morbidity and mortality worldwide. Several interacting environmental, biochemical, and genetic risk factors can increase disease susceptibility. While some of the genes involved in the etiology of CVD are known, many are yet to be discovered. During the last few decades, scientists have searched for these genes with genome-wide linkage and association methods, and with more targeted candidate gene studies.

Master of Science, Kati Kristiansson, from the research group of Professor Leena Peltonen at the National Public Health Institute and the University of Helsinki, Finland, has investigated variation within the upstream transcription factor 1 (USF1) gene locus in relation to CVD risk factors, atherosclerosis, and incidence and prevalence of CVD.

USF1 gene was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease. The gene encodes a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function.

We examined association between USF1 variants and several CVD risk factors, such as lipid phenotypes, body composition measures, and metabolic syndrome, in two prospective population cohorts, and our data suggested that USF1 contributes to these CVD risk factors at the population level, Kristiansson says. Notably, the associations with quantitative measurements were mostly detected among study subjects with CVD or metabolic syndrome, suggesting complex interactions between USF1 effects and the pathophysiological state of an individual.

To address the question if carriership of this risk allele has a direct impact on the atherosclerotic lesions of the coronary arteries and abdominal aorta, Kristansson used two study samples of middle-aged men with detailed measurements of atherosclerosis obtained in autopsy. It turned out that USF1 variation significantly associated with the size of the areas of several types of arterial wall lesions, especially with calcification of the arteries.

Finally, when Kristiansson tested what effect the USF1 risk variants have on sudden cardiac death and incidence of CVD at the population level, she found out that the risk variant increased the risk of sudden cardiac death of the same study subjects. Furthermore, USF1 alleles associated with incidence of CVD in Finnish population follow-up cohorts. These associations were especially prominent among women, suggesting a sex specific effect, which has also been detected in subsequent studies.

In conclusion, USF1 seems to have a role in the etiology of CVD. Additional studies are warranted to identify functional variants and to study interactions between USF1 and other genetic or environmental factors. These studies, which uncover the details of the disease etiology, provide tools for the prevention and treatment cardiovascular disease, Kristiansson states.


'/>"/>

Contact: M.Sc. Kati Kristiansson
kati.kristiansson@ktl.fi
358-456-389-404
University of Helsinki
Source:Eurekalert

Related biology news :

1. Does the desire to consume alcohol and tobacco come from our genetic makeup?
2. Diverse genetic abnormalities lead to NF-κB activation in multiple myeloma
3. Many parents at-risk for cancer disclose genetic test results to children
4. Genetics determine optimal drug dose of common anticoagulant
5. Claims of sex-related differences in genetic association studies often not properly validated
6. American College of Medical Genetics responds to new FDA labeling decision for warfarin
7. UNC study questions FDA genetic-screening guidelines for cancer drug
8. Genome study shines light on genetic link to height
9. Selexis Announces Advanced Approach to Maximize Power of Genetic Elements for Rapid Development of High Performance Cell Lines
10. Genes, Environment and Health Initiative invests in genetic studies, environmental monitoring
11. Rutgers Genetics receives $7.8 million for autism research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:3/30/2017)... YORK , March 30, 2017 Trends, ... type (physiological and behavioral), by technology (fingerprint, AFIS, iris ... voice recognition, and others), by end use industry (government ... and immigration, financial and banking, and others), and by ... Europe , Asia Pacific , ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... PITTSBURGH, PA (PRWEB) , ... October 10, 2017 ... ... this year’s recipients of 13 prestigious awards honoring scientists who ... be presented in a scheduled symposium during Pittcon 2018, the world’s leading conference ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer television ... quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With global ... the challenge of how to continue to feed a growing nation. At the same ...
(Date:10/9/2017)... (PRWEB) , ... October 09, 2017 , ... ... a four-tiered line of medical marijuana products targeting the needs of consumers who ... packaging of Kindred takes place in Phoenix, Arizona. , As operators of two ...
(Date:10/7/2017)... (PRWEB) , ... October 06, ... ... years’ experience providing advanced instruments and applications consulting for microscopy and surface ... expertise in application consulting, Nanoscience Analytical offers a broad range of contract ...
Breaking Biology Technology: