Navigation Links
Genetic sleuth solves glaucoma mystery

Dr. Michael Walter is one good gumshoe. The University of Alberta medical geneticist has cracked the case of WDR36, a gene linked to glaucoma.

Glaucoma is a leading cause of blindness in which cells in the optic nerve die, preventing the brain from understanding what patients see. Scientists have long suspected a link between WDR36 and glaucoma, but have been unable to figure out what the gene does and why some people with variations of the gene get glaucoma while others don't.

Walter unravels this mystery in an article, published in the April 1, 2009 print edition of the journal, Human Molecular Genetics, based in Oxford, England.

Walter and his team investigated a yeast gene that is extremely similar to WDR36 but much easier to experiment with. They introduced the suspected WDR36 variations into the yeast gene and tested its ability to function, and discovered that WDR36 wasn't working alone. The gene variations only affected the yeast when there were simultaneous changes to another gene, called STI1. Walter thinks that STI1 is only one of many other genes in which mutations must take place in order for WDR36 to cause glaucoma.

"Our results suggest that glaucoma is polygenetic, which means there have to be changes in several different genes in order for WDR36 to cause the disease," says Walter, a professor and chair of the Department of Medical Genetics in the Faculty of Medicine & Dentistry.

This explains why only some people who have WDR36 gene variations get glaucoma. This may also lead to further research to uncover the other genetic accomplices. "Only 10 per cent of glaucoma cases are caused by known genes, so the genes involved in this polygenetic interaction may help to explain the other 90 per cent," says Walter, who is also a professor in the Department of Ophthalmology.

In addition, Walter uncovered what WDR36 does in normal function. The gene helps make ribosomes, specialized molecules that make the proteins necessary to keep the cell functioning. Walter suspects that changes to WDR36 will affect ribosome production, and in turn affect the cell's ability to function.

But this mutation alone isn't enough to cause glaucoma. Changes also have to happen to the gene's partner in crime, the STI1 gene, which normally packages the proteins produced by WDR36's ribosomes. Walter says these findings explain the mechanics of glaucoma, how changes in these two genes lead to the illness.

"Glaucoma happens when WDR36 isn't producing ribosomes properly and STI1 isn't packaging those proteins properly you need at least these two mutations to cause the disease."

Walter says this DNA detective work may have a tangible impact on preventing and treating glaucoma. "Glaucoma is one of the few blinding eye diseases that we can actually treat. But right now we're only treating the symptoms, not the disease."

"If we can understand who gets glaucoma, then we're in a much better place to prevent it, and if we can understand why they get glaucoma, then we have some important clues to use in developing second-generation medications that treat the disease itself."


Contact: Lindsay Elleker
University of Alberta Faculty of Medicine & Dentistry

Related biology news :

1. Does the desire to consume alcohol and tobacco come from our genetic makeup?
2. Diverse genetic abnormalities lead to NF-κB activation in multiple myeloma
3. Many parents at-risk for cancer disclose genetic test results to children
4. Genetics determine optimal drug dose of common anticoagulant
5. Claims of sex-related differences in genetic association studies often not properly validated
6. American College of Medical Genetics responds to new FDA labeling decision for warfarin
7. UNC study questions FDA genetic-screening guidelines for cancer drug
8. Genome study shines light on genetic link to height
9. Selexis Announces Advanced Approach to Maximize Power of Genetic Elements for Rapid Development of High Performance Cell Lines
10. Genes, Environment and Health Initiative invests in genetic studies, environmental monitoring
11. Rutgers Genetics receives $7.8 million for autism research
Post Your Comments:
(Date:11/12/2015)... , Nov. 12, 2015  A golden retriever ... Duchenne muscular dystrophy (DMD) has provided a new lead ... Children,s Hospital, the Broad Institute of MIT and Harvard ... Brazil . Cell, pinpoints ... dogs "escape" the disease,s effects. The Boston Children,s lab ...
(Date:11/12/2015)... LONDON , Nov. 11, 2015   ... and reliable analytical tools has been paving the ... and qualitative determination of discrete analytes in clinical, ... sensors are being predominantly used in medical applications, ... and environmental sectors due to continuous emphasis on ...
(Date:11/10/2015)... LONDON , Nov. 10, 2015 /PRNewswire/ ... segmented on the basis of product, type, ... segments included in this report are consumables, ... this report are safety biomarkers, efficacy biomarkers, ... in this report are diagnostics development, drug ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... HOLLISTON, Mass. , Nov. 25, 2015 ... a biotechnology company developing bioengineered organ implants for life-threatening ... will present at the LD Micro "Main Event" investor ... PT. The presentation will be webcast live and posted ... also be available at the conference for one-on-one meetings ...
(Date:11/25/2015)... ... 25, 2015 , ... A long-standing partnership between the Academy ... been formalized with the signing of a Memorandum of Understanding. , AMA Executive ... Karl Minter and Capt. Albert Glenn Tuesday, November 24, 2015, at AMA Headquarters ...
(Date:11/25/2015)... ... November 25, 2015 , ... Jessica Richman and Zachary Apte, ... their initial angel funding process. Now, they are paying it forward to other ... stage investments in the microbiome space. In this, they join other successful ...
(Date:11/24/2015)... Nov. 24, 2015 Cepheid (NASDAQ: CPHD ... at the following conference, and invited investors to participate ...      Tuesday, December 1, 2015 at 11.00 a.m. ...      Tuesday, December 1, 2015 at 11.00 a.m. ... New York, NY      Tuesday, December ...
Breaking Biology Technology: