Navigation Links
Genetic septet in control of blood platelet clotting

In what is believed to be the largest review of the human genetic code to determine why some people's blood platelets are more likely to clump faster than others, scientists at Johns Hopkins and in Boston have found a septet of overactive genes, which they say likely control that bodily function.

"Our results give us a clear set of new molecular targets, the proteins produced from these genes, to develop tests that could help us identify people more at risk for blood clots and for whom certain blood-thinning drugs may work best or not," says co-senior study investigator and cardiologist Lewis Becker, M.D.

"We can even look toward testing new treatments that may speed up how the body fights infection or recovers from wounds," says Becker, a professor at the Johns Hopkins University School of Medicine.

Platelets are key to fighting infection and sealing wounds and, adversely, can speed up cardiovascular diseases that can lead to potentially fatal heart attacks or strokes.

Reporting in the issue of Nature Genetics online June 7, researchers tested the platelet "stickiness" in blood samples from some 5,000 American men and women and compared the results to some 2.5 million single possible changes in the human genetic code to see which genes stood out across the entire group as speeding up or slowing down platelet clumping. Study participants included both whites and blacks with no previously known chronic health problems, representing what researchers say is "a solid cross-section of American society."

Seven genes were found on their own to be hugely significant in affecting how fast or how long it took for platelets to stick together or how many platelets would clump. (The seven were more than 500 million times more likely than other genes to impact clumping, whereas the next most influential genes, a set of 15, were found to be 10,000 times more likely to affect clumping function.)

According to Becker, three of the seven genes had been previously reported as having some role in platelet aggregation, but "it was not until now that we put together all the major pieces of the genetic puzzle that will help us understand why some people's blood is more or less prone to clot than others and how this translates into promoting healing and stalling disease progression."

He points out that the latest study was made possible by combining data from two longstanding studies of why seemingly healthy people get heart disease. Results came from some 2,800 white men and women participating in the Massachusetts-based Framingham Heart Study, all since 2003, when researchers in the decades-long study began collecting platelet samples. Platelet samples came from another 2,000 similar participants, including 800 blacks, enrolled in the Genetic Study of Aspirin Responsiveness (GeneSTAR) under way at Johns Hopkins since 2002 and led by Becker's wife and study co-investigator Diane Becker, M.P.H., Sc.D., a professor at the both Hopkins' School of Medicine and the University's Bloomberg School of Public Health.

According to Diane Becker, a health epidemiologist, generalizing the data to the broader American population was only made possible by combining these large study populations, as neither on their own was sufficient for such a genome-wide scan.

In the study, platelet samples were tested for their "stickiness" in response to adding various concentrations of three chemicals commonly found in the blood, including adenosine diphosphate, or ADP, which is an energy molecule released by platelets into the blood to attract and clump with other platelets; epinephrine, a stress hormone tied to inflammation and vascular disease; and collagen, the most common protein in the human body.

Clumping results were then cross-matched with results from gene chip surveys of the human genome, which allow researchers to sort through millions of different genetic modifications to see which specific genes are more active than others. Diane Becker says the genetic analysis alone was a massive undertaking and took some two years to complete.

Lewis Becker says the teams' next steps are to test various platelet antagonists, or blood-thinning agents, like aspirin, the most common drug treatment in heart and vascular diseases, to find out precisely which hereditary factors may distinguish people who are so-called aspirin-resistant or not, and why the medication works for most but not all.

"Our combined study results really do set the path for personalizing a lot of treatments for cardiovascular disease to people based on their genetic make up and who is likely to benefit most or not at all from these treatments," says Lewis Becker.


Contact: David March
Johns Hopkins Medical Institutions

Related biology news :

1. Genetically modified cell procedure may prove useful in treating kidney failure
2. Freely available data supporting next generation of human genetic research
3. Should the results of individual genetic studies be disclosed to participants?
4. Small genetic variant can predict response to hepatitis C treatment
5. Genetics Society of America to host 2010 Yeast Genetics & Molecular Biology Meeting
6. New microbial genetic system dissects biomass to biofuel conversion
7. Autism genome project identifies genetic variants that may make people susceptible to disorder
8. Study finds epigenetic similarities between Wilms tumor cells and normal kidney stem cells
9. UT Southwestern researchers use novel sperm stem-cell technique to produce genetically modified rats
10. Genetics Society of America to host Model Organisms to Human Biology Meeting, June 12-15, 2010
11. AMP cautions consumers about direct access genetic testing
Post Your Comments:
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing ...  3D medical LCD display is the latest premium product recently added to the range ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
(Date:6/23/2016)... FRANCISCO , June 23, 2016   EpiBiome ... has secured $1 million in debt financing from Silicon ... ramp up automation and to advance its drug development ... its new facility. "SVB has been an ... beyond the services a traditional bank would provide," said ...
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a division of ... and optimized exclusively for Okuma CNC machining centers at The International Manufacturing Technology ... among several companies with expertise in toolholding, cutting tools, machining dynamics and distribution, ...
Breaking Biology Technology: