Navigation Links
Genetic risk for autism stems mostly from common genes
Date:7/20/2014

PITTSBURGHUsing new statistical tools, Carnegie Mellon University's Kathryn Roeder has led an international team of researchers to discover that most of the genetic risk for autism comes from versions of genes that are common in the population rather than from rare variants or spontaneous glitches.

Published in the July 20 issue of the journal "Nature Genetics," the study found that about 52 percent of autism was traced to common genes and rarely inherited variations, with spontaneous mutations contributing a modest 2.6 percent of the total risk. The research team from the Population-Based-Autism Genetics and Environment Study (PAGES) Consortium used data from Sweden's universal health registry to compare roughly 3,000 subjects, including autistic individuals and a control group. The largest study of its kind to date, the team also showed that inheritability outweighs environmental risk.

"From this study, we can see that genetics plays a major role in the development of autism compared to environmental risk factors, making autism more like height than we thought many small risk factors add up, each pushing a person further out on the spectrum," said Roeder, professor of statistics and computational biology at Carnegie Mellon and a leading expert on statistical genomics and the genetic basis of complex disease. "These findings could not have happened without statistics, and now we must build off of what we learned and use statistical approaches to determine where to put future resources, and decide what is the most beneficial direction to pursue to further pinpoint what causes autism."

Although autism is thought to be caused by an interplay of genetic and other factors, including environmental forces, consensus on their relative contributions and the outlines of its genetic architecture has remained elusive, until now. With this new study, the researchers believe that autism genetics is beginning to catch up.

Led by Roeder, the researchers used new statistical methods such as machine learning techniques and dimension reduction tools that allowed them to more reliably sort out the inheritability of the disorder. In addition, they were able to compare their results with a parallel family-based study in the Swedish population, which took into account data from twins, cousins, and factors like age of the father at birth and parents' psychiatric history. A best-fit statistical model took form, based mostly on additive genetic and non-shared environmental effects.

"Thanks to the boost in statistical power that comes with ample sample size, autism geneticists can now see the forest for the trees," said Thomas R. Insel, director of the National Institute of Mental Health (NIMH). "Knowing the nature of the genetic risk will help focus the search for clues to the molecular roots of the disorder."

Thomas Lehner, chief of the NIMH's Genomics Research Branch, agreed and added, "This is a different kind of analysis than employed in previous studies. Data from genome-wide association studies was used to identify a genetic model instead of focusing just on pinpointing genetic risk factors. The researchers were able to pick from all of the cases of illness within a population-based registry."

Now that the genetic architecture is better understood, the researchers are identifying specific genetic risk factors detected in the sample, such as deletions and duplications of genetic material and spontaneous mutations. The researchers said even though such rare spontaneous mutations accounted for only a small fraction of autism risk, the potentially large effects of these glitches make them important clues to understanding the molecular underpinnings of the disorder.

"Within a given family, the mutations could be a critical determinant that leads to the manifestation of ASD in a particular family member," said Joseph Buxbaum, the study's first author and professor of psychiatry, neuroscience, genetics and genomic sciences at the Icahn School of Medicine at Mount Sinai (ISMMS). "The family may have common variation that puts it at risk, but if there is also a 'de novo' mutation on top of that, it could push an individual over the edge. So for many families, the interplay between common and spontaneous genetic factors could be the underlying genetic architecture of the disorder."

Current studies have not been large enough to reveal the many common genetic variants that increase the risk of autism. On their own, none of these common variants will have sufficient impact to cause autism.

"Our group in Pittsburgh is working to develop a model that predicts the genetic risk for a family based on a myriad of small effects. Such a score could provide clinical benefit to families," Roeder said.


'/>"/>

Contact: Shilo Rea
shilo@cmu.edu
412-268-6094
Carnegie Mellon University
Source:Eurekalert  

Related biology news :

1. Nearby chimpanzee populations show much greater genetic diversity than distant human populations
2. Will a genetic mutation cause trouble? Ask Spliceman
3. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
4. Perception and preference may have genetic link to obesity
5. A foot in the door to genetic information
6. Genetic survey of endangered Antarctic blue whales shows surprising diversity
7. Epigenetic signatures direct the repair potential of reprogrammed cells
8. Epigenetics and epidemiology -- hip, hype and science
9. Genetic variation in East Asians found to explain resistance to cancer drugs
10. First complete full genetic map of promising energy crop
11. Genetic research develops tools for studying diseases, improving regenerative treatment
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Genetic risk for autism stems mostly from common genes
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... Today HYPR Corp. , leading innovator ... of the HYPR platform is officially FIDO® Certified ... architecture that empowers biometric authentication across Fortune 500 enterprises ... over 15 million users across the financial services industry, ... product suites and physical access represent a growing portion ...
(Date:3/30/2017)... March 30, 2017  On April 6-7, 2017, Sequencing.com ... Genome hackathon at Microsoft,s headquarters in ... will focus on developing health and wellness apps that ... Hack the Genome is the first hackathon for ... world,s largest companies in the genomics, tech and health ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia ... be hosting a Webinar titled, “Pathology is going digital. Is your lab ready?” ... pathology adoption best practices and how Proscia improves lab economics and realizes an ...
(Date:10/11/2017)... Georgia (PRWEB) , ... October 11, 2017 , ... Disappearing ... taking the lives of over 5.5 million people each year. Especially those living in ... greenovative startup Treepex - based in one of the most pollution-affected countries globally - ...
(Date:10/10/2017)... DIEGO, CALIF. (PRWEB) , ... October 10, 2017 , ... ... as part of its corporate rebranding initiative announced today. The bold new look ... its reach, as the company moves into a significant growth period. , It will ...
(Date:10/10/2017)... ... ... Dr. Bob Harman, founder and CEO of VetStem Biopharma, Inc. spent ... entitled “Stem Cells and Their Regenerative Powers,” was held on August 31st, 2017 ... joined by two human doctors: Peter B. Hanson, M.D., Chief of Orthopedic Surgery, Grossmont ...
Breaking Biology Technology: