Navigation Links
Genetic predictors of postpartum depression uncovered by Hopkins researchers

The epigenetic modifications, which alter the way genes function without changing the underlying DNA sequence, can apparently be detected in the blood of pregnant women during any trimester, potentially providing a simple way to foretell depression in the weeks after giving birth, and an opportunity to intervene before symptoms become debilitating.

The findings of the small study involving 52 pregnant women are described online in the journal Molecular Psychiatry.

"Postpartum depression can be harmful to both mother and child," says study leader Zachary Kaminsky, Ph.D., an assistant professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine. "But we don't have a reliable way to screen for the condition before it causes harm, and a test like this could be that way."

It is not clear what causes postpartum depression, a condition marked by persistent feelings of sadness, hopelessness, exhaustion and anxiety that begins within four weeks of childbirth and can last weeks, several months or up to a year. An estimated 10 to 18 percent of all new mothers develop the condition, and the rate rises to 30 to 35 percent among women with previously diagnosed mood disorders. Scientists long believed the symptoms were related to the large drop-off in the mother's estrogen levels following childbirth, but studies have shown that both depressed and nondepressed women have similar estrogen levels.

By studying mice, the Johns Hopkins researchers suspected that estrogen induced epigenetic changes in cells in the hippocampus, a part of the brain that governs mood. Kaminsky and his team then created a complicated statistical model to find the candidate genes most likely undergoing those epigenetic changes, which could be potential predictors for postpartum depression. That process resulted in the identification of two genes, known as TTC9B and HP1BP3, about which little is known save for their involvement in hippocampal activity.

Kaminsky says the genes in question may have something to do with the creation of new cells in the hippocampus and the ability of the brain to reorganize and adapt in the face of new environments two elements important in mood. In some ways, he says, estrogen can behave like an antidepressant, so that when inhibited, it adversely affects mood.

The researchers later confirmed their findings in humans by looking for epigenetic changes to thousands of genes in blood samples from 52 pregnant women with mood disorders. Jennifer L. Payne, M.D., director of the Johns Hopkins Women's Mood Disorders Center, collected the blood samples. The women were followed both during and after pregnancy to see who developed postpartum depression.

The researchers noticed that women who developed postpartum depression exhibited stronger epigenetic changes in those genes that are most responsive to estrogen, suggesting that these women are more sensitive to the hormone's effects. Specifically, two genes were most highly correlated with the development of postpartum depression. TTC9B and HP1BP3 predicted with 85 percent certainty which women became ill.

"We were pretty surprised by how well the genes were correlated with postpartum depression," Kaminsky says. "With more research, this could prove to be a powerful tool."

Kaminsky says the next step in research would be to collect blood samples from a larger group of pregnant women and follow them for a longer period of time. He also says it would be useful to examine whether the same epigenetic changes are present in the offspring of women who develop postpartum depression.

Evidence suggests that early identification and treatment of postpartum depression can limit or prevent debilitating effects. Alerting women to the condition's risk factors as well as determining whether they have a previous history of the disorder, other mental illness and unusual stress is key to preventing long-term problems.

Research also shows, Kaminsky says, that postpartum depression not only affects the health and safety of the mother, but also her child's mental, physical and behavioral health.

Kaminsky says that if his preliminary work pans out, he hopes a blood test for the epigenetic biomarkers could be added to the battery of tests women undergo during pregnancy, and inform decisions about the use of antidepressants during pregnancy. There are concerns, he says, about the effects of these drugs on the fetus and their use must be weighed against the potentially debilitating consequences to both the mother and child of forgoing them.

"If you knew you were likely to develop postpartum depression, your decisions about managing your care could be made more clearly," he says.


Contact: Stephanie Desmon
Johns Hopkins Medicine

Related biology news :

1. Genetic risk for schizophrenia is connected to reduced IQ
2. European Society of Human Genetics urges caution over use of new genetic sequencing techniques
3. University of Maryland Medical Center launches genetic-testing program for cardiac patients
4. Penn Medicine researchers identify 4 new genetic risk factors for testicular cancer
5. Fred Hutch evolutionary geneticist Harmit Malik selected as an HHMI investigator
6. Genetic and clinical factors best to predict late recurrence in estrogen receptor POS breast cancer
7. Study examines effects of genetic variants for infants with neonatal abstinence syndrome
8. Genetics Society of Americas GENETICS journal highlights for May 2013
9. Europe needs genetically engineered crops, scientists say
10. Epigenetic changes shed light on biological mechanism of autism
11. Genetic circuit allows both individual freedom, collective good
Post Your Comments:
(Date:11/12/2015)...   Growing need for low-cost, easy to ... paving the way for use of biochemical sensors ... in clinical, agricultural, environmental, food and defense applications. ... medical applications, however, their adoption is increasing in ... emphasis on improving product quality and growing need ...
(Date:11/9/2015)... JOSE, Calif. , Nov. 9, 2015  Synaptics ... human interface solutions, today announced broader entry into the ... vehicle-specific solutions that match the pace of consumer electronics ... and biometric sensors are ideal for the automotive industry ... vehicle. Europe , ...
(Date:10/29/2015)... Daon, a global leader in mobile biometric ... new version of its IdentityX Platform , IdentityX ... have already installed IdentityX v4.0 and are ... FIDO UAF certified server component as an option ... features. These customers include some of the largest and ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... Human Longevity, Inc. (HLI), the genomics-based, technology-driven ... Genomics, Inc., a leading genome informatics company offering highly ... The San Diego -based company has ... and Co-founder, Ashley Van Zeeland , Ph.D., who is ... of the deal were not disclosed. ...
(Date:11/30/2015)... DIEGO , Nov. 30, 2015  HUYA Bioscience ... China,s pharmaceutical innovations, today announced it ... Drug Development Fund (KDDF) to foster collaboration between KDDF ... development and commercialization of healthcare products for the global ... as an important source of new innovative preclinical and ...
(Date:11/30/2015)... , Nov. 30, 2015  AbbVie, is introducing ... focuses on a daily routine for managing the life-long ... medication can affect the way the body absorbs it ... their a daily routine are important. The goal of ... patients better manage their hypothyroidism by establishing a daily ...
(Date:11/30/2015)... Nov. 30, 2015  Northwest Biotherapeutics (NASDAQ: NWBO ... personalized immune therapies for solid tumor cancers, announced today ... independent director, and the Company welcomes Neil Woodford,s ... a recent anonymous internet report on NW Bio.  The ... Linda Powers stated, "We agree with Mr. ...
Breaking Biology Technology: