Navigation Links
Genetic code of the deadly tsetse fly unraveled
Date:4/24/2014

A decade-long effort by members of the International Glossina Genome Initiative (IGGI) has produced the first complete genome sequence of the tsetse fly, Glossina morsitans. The blood-sucking insect is the sole transmitter of sleeping sickness, a potentially deadly disease endemic in sub-Saharan Africa. The vast store of genetic data will help researchers develop new ways to prevent the disease and provide insights into the tsetse fly's unique biology.

The tsetse fly is quite unique in the insect world: it feeds exclusively on the blood of humans and animals, gives birth to live young and provides nutrition to its young by lactation.

But in the invertebrate world, the tsetse fly is a killer: its bite can transfer the parasite that causes trypanosomiasis, or sleeping sickness. If left untreated, the disease is fatal. No vaccine has yet been developed and current drug treatments have unwanted side effects.

An estimated 70 million people throughout sub-Saharan Africa are at risk for trypanosomiasis. And because the disease also affects animals, rearing livestock in endemic areas is difficult to impossible, resulting in several billions of dollars in lost agricultural output each year. Snuffing out the tsetse fly, the disease's one and only vector, has long been a public health priority.

The IGGI researchers' goal was to identify the genes in the tsetse fly's genome that code for proteins and then to link those genes to their corresponding biological function, a process called annotation. Proteins are the 'parts list' of an organism and are involved in every aspect of its structure and function.

"In a first phase of the project, we used computers to automatically annotate the genetic sequence of the tsetse fly and compare it with the sequences of similar species with known genomes, such as the fruit fly. The computers flagged segments of genetic material in the tsetse fly's genome known to code for proteins in other species and used this data to predict the tsetse fly's gene structure and function," explains Geoffrey Attardo (Yale University), a lead author of the study. Teams of IGGI scientists then manually examined the automated annotations.

Doctoral researcher Jelle Caers and Professor Liliane Schoofs (KU Leuven) worked for two years in the IGGI group studying the tsetse fly's neuropeptide signalling genes. "We annotated 39 neuropeptide genes and 43 receptor genes. Neuropeptides regulate most if not all physiological processes including feeding, reproduction, metabolism, water balance and behaviour. In that sense, unravelling the tsetse fly's neuropeptide systems undoubtedly contributes to a better understanding of its overall biology."

And neuropeptides may just hold the key to controlling tsetse populations and eventually eradicating trypanosomiasis. "Neuropeptides are promising targets for the development of new environmentally-safe insecticides because they regulate all of the tsetse fly's crucial processes," says Jelle Caers. "Interfering with neuropeptides' proper functioning may allow us to decrease the fly's fitness and thereby shrink populations. There is still more work to be done before trypanosomiasis is eradicated in humans and animals, but decoding the tsetse genome is a big step in the right direction."


'/>"/>

Contact: Jelle Caers
jelle.caers@bio.kuleuven.be
32-495-840-513
KU Leuven
Source:Eurekalert  

Related biology news :

1. Nearby chimpanzee populations show much greater genetic diversity than distant human populations
2. Will a genetic mutation cause trouble? Ask Spliceman
3. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
4. Perception and preference may have genetic link to obesity
5. A foot in the door to genetic information
6. Genetic survey of endangered Antarctic blue whales shows surprising diversity
7. Epigenetic signatures direct the repair potential of reprogrammed cells
8. Epigenetics and epidemiology -- hip, hype and science
9. Genetic variation in East Asians found to explain resistance to cancer drugs
10. First complete full genetic map of promising energy crop
11. Genetic research develops tools for studying diseases, improving regenerative treatment
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Genetic code of the deadly tsetse fly unraveled
(Date:4/5/2017)... 4, 2017 KEY FINDINGS The ... at a CAGR of 25.76% during the forecast period ... primary factor for the growth of the stem cell ... MARKET INSIGHTS The global stem cell market ... and geography. The stem cell market of the product ...
(Date:4/3/2017)... WASHINGTON , April 3, 2017 /PRNewswire-USNewswire/ ... single-cell precision engineering platform, detected a statistically ... cell product prior to treatment and objective ... highlight the potential to predict whether cancer ... prior to treatment, as well as to ...
(Date:3/30/2017)... March 30, 2017 The research team of ... three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae ... realm of speed and accuracy for use in identification, crime investigation, ... cost. ... A research ...
Breaking Biology News(10 mins):
(Date:9/20/2017)... (PRWEB) , ... September 20, 2017 , ... ... today that it has appointed Vishwas Paralkar to the role of chief scientific ... targeting technology. He will report to Cybrexa’s president and CEO, Per Hellsund. , ...
(Date:9/20/2017)... MD (PRWEB) , ... September 20, 2017 , ... ... digital pathology, and Huron Digital Pathology , a provider of whole slide ... 2017 Pathology Visions conference . The workshop, entitled “Successfully Deploying a Best-in-Class Strategy ...
(Date:9/20/2017)... , ... September 20, 2017 , ... ... focused on molecular manufacturing and other transformative technologies, announced the winners for the ... and the other for Theory in nanotechnology/molecular manufacturing. , Established in 1993 and ...
(Date:9/19/2017)... (PRWEB) , ... September 19, 2017 , ... ... a standard fume hood and a high-performance fume hood. Along with the advantages ... and applications for ductless vs. ducted hoods in the laboratory. , Attendees will ...
Breaking Biology Technology: