Navigation Links
Genetic code of the deadly tsetse fly unraveled
Date:4/24/2014

A decade-long effort by members of the International Glossina Genome Initiative (IGGI) has produced the first complete genome sequence of the tsetse fly, Glossina morsitans. The blood-sucking insect is the sole transmitter of sleeping sickness, a potentially deadly disease endemic in sub-Saharan Africa. The vast store of genetic data will help researchers develop new ways to prevent the disease and provide insights into the tsetse fly's unique biology.

The tsetse fly is quite unique in the insect world: it feeds exclusively on the blood of humans and animals, gives birth to live young and provides nutrition to its young by lactation.

But in the invertebrate world, the tsetse fly is a killer: its bite can transfer the parasite that causes trypanosomiasis, or sleeping sickness. If left untreated, the disease is fatal. No vaccine has yet been developed and current drug treatments have unwanted side effects.

An estimated 70 million people throughout sub-Saharan Africa are at risk for trypanosomiasis. And because the disease also affects animals, rearing livestock in endemic areas is difficult to impossible, resulting in several billions of dollars in lost agricultural output each year. Snuffing out the tsetse fly, the disease's one and only vector, has long been a public health priority.

The IGGI researchers' goal was to identify the genes in the tsetse fly's genome that code for proteins and then to link those genes to their corresponding biological function, a process called annotation. Proteins are the 'parts list' of an organism and are involved in every aspect of its structure and function.

"In a first phase of the project, we used computers to automatically annotate the genetic sequence of the tsetse fly and compare it with the sequences of similar species with known genomes, such as the fruit fly. The computers flagged segments of genetic material in the tsetse fly's genome known to code for proteins in other species and used this data to predict the tsetse fly's gene structure and function," explains Geoffrey Attardo (Yale University), a lead author of the study. Teams of IGGI scientists then manually examined the automated annotations.

Doctoral researcher Jelle Caers and Professor Liliane Schoofs (KU Leuven) worked for two years in the IGGI group studying the tsetse fly's neuropeptide signalling genes. "We annotated 39 neuropeptide genes and 43 receptor genes. Neuropeptides regulate most if not all physiological processes including feeding, reproduction, metabolism, water balance and behaviour. In that sense, unravelling the tsetse fly's neuropeptide systems undoubtedly contributes to a better understanding of its overall biology."

And neuropeptides may just hold the key to controlling tsetse populations and eventually eradicating trypanosomiasis. "Neuropeptides are promising targets for the development of new environmentally-safe insecticides because they regulate all of the tsetse fly's crucial processes," says Jelle Caers. "Interfering with neuropeptides' proper functioning may allow us to decrease the fly's fitness and thereby shrink populations. There is still more work to be done before trypanosomiasis is eradicated in humans and animals, but decoding the tsetse genome is a big step in the right direction."


'/>"/>

Contact: Jelle Caers
jelle.caers@bio.kuleuven.be
32-495-840-513
KU Leuven
Source:Eurekalert  

Related biology news :

1. Nearby chimpanzee populations show much greater genetic diversity than distant human populations
2. Will a genetic mutation cause trouble? Ask Spliceman
3. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
4. Perception and preference may have genetic link to obesity
5. A foot in the door to genetic information
6. Genetic survey of endangered Antarctic blue whales shows surprising diversity
7. Epigenetic signatures direct the repair potential of reprogrammed cells
8. Epigenetics and epidemiology -- hip, hype and science
9. Genetic variation in East Asians found to explain resistance to cancer drugs
10. First complete full genetic map of promising energy crop
11. Genetic research develops tools for studying diseases, improving regenerative treatment
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Genetic code of the deadly tsetse fly unraveled
(Date:5/6/2017)... 5, 2017 RAM Group , ... new breakthrough in biometric authentication based on a ... properties to perform biometric authentication. These new sensors are ... created by Ram Group and its partners. This sensor ... supply chains and security. Ram Group is a ...
(Date:4/13/2017)... 13, 2017 UBM,s Advanced Design and Manufacturing ... feature emerging and evolving technology through its 3D Printing ... run alongside the expo portion of the event and ... demonstrations focused on trending topics within 3D printing and ... manufacturing event will take place June 13-15, 2017 at the ...
(Date:4/11/2017)... 11, 2017 NXT-ID, Inc. (NASDAQ:   ... announces the appointment of independent Directors Mr. Robin D. ... Board of Directors, furthering the company,s corporate governance and expertise. ... Gino Pereira , ... forward to their guidance and benefiting from their considerable expertise ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... Irvine, ca (PRWEB) , ... October 12, 2017 ... ... for the Surgical Wound Market with the addition of its newest module, US ... the $1.2B market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... Rosalind™, the first-ever genomics analysis platform specifically designed for life science researchers ... honor of pioneering researcher Rosalind Franklin, who made a major contribution to ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... its endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression ... guides is transformative for performing systematic gain-of-function studies. , This complement to ...
(Date:10/11/2017)... ... , ... ComplianceOnline’s Medical Device Summit is back for its 4th year. The ... Francisco, CA. The Summit brings together current and former FDA office bearers, regulators, industry ... officials from around the world to address key issues in device compliance, quality and ...
Breaking Biology Technology: