Navigation Links
Genetic causes identified for disturbances in lipid metabolism

Some of these common human gene variants are already known to be risk factors for diabetes mellitus. The pathomechanisms of diabetes have intrigued physicians and been the subject of much debate for many decades. These new research results may contribute to a better understanding of the clinical picture of diabetes and its pathogenesis and could lead to new approaches in early diagnosis and therapy. The findings have been published in the current online issue of the renowned journal Nature Genetics.

The research team, made up of scientists of the Institute of Bioinformatics and Systems Biology at Helmholtz Zentrum Mnchen and of Ludwig-Maximilians-Universitt Mnchen (LMU) and led by Professor Karsten Suhre, identified variants in nine different genes which could be associated with disturbances in the lipid metabolism. Together with Dr. Christian Gieger and Assistant Professor Thomas Illig of the Institute of Epidemiology at Helmholtz Zentrum Mnchen, Professor Suhre succeeded for the first time in associating variants in the well-known diabetes risk genes MTNR1B and GCKR with changes in the metabolism. "The results of our study bring us a decisive step closer in our search for markers for the early detection and therapy of serious metabolic diseases such as diabetes," Professor Suhre explained.

The variants identified in the study usually cause differences in the metabolization of important lipid building blocks of the body. Moreover, many of the identified variants are already known to be associated with elevated disease risk, for example for metabolic disorders first and foremost for diabetes.

As first step, the research team determined the concentrations of 163 metabolic products in blood samples of 1,800 participants of the KORA population study. Next, they investigated the metabolic profiles in a genome-wide association study for possible associations with common gene variants (SNPs). Then the scientists confirmed the identified associations by repeating their experiments in an independent study. The replication study took place in cooperation with scientists of the Sanger Centre in Hinxton and King's College in London, based on the British population study TwinsUK.

Karsten Suhre's research work belongs to the young research field of metabolomics in which scientists determine the concentrations of as many metabolic products (metabolites) as possible. In individuals with different gene variants, the affected enzymes also vary in their activity, and the concentrations of the metabolic products differ. The relationships are then categorized into distinct genetically determined metabotypes which can react differently to external environmental influences such as nutrition and other living conditions. In this way the metabolomics experts can identify risk patients for metabolic disorders earlier than they could previously. Thus, this study was able to detect genetically caused metabolic processes which play a crucial role in the pathogenesis as well as in the diagnosis and therapy of diseases such as diabetes.


Contact: Sven Winkler
Helmholtz Zentrum Mnchen - German Research Center for Environmental Health

Related biology news :

1. Does the desire to consume alcohol and tobacco come from our genetic makeup?
2. Diverse genetic abnormalities lead to NF-κB activation in multiple myeloma
3. Many parents at-risk for cancer disclose genetic test results to children
4. Genetics determine optimal drug dose of common anticoagulant
5. Claims of sex-related differences in genetic association studies often not properly validated
6. American College of Medical Genetics responds to new FDA labeling decision for warfarin
7. UNC study questions FDA genetic-screening guidelines for cancer drug
8. Genome study shines light on genetic link to height
9. Selexis Announces Advanced Approach to Maximize Power of Genetic Elements for Rapid Development of High Performance Cell Lines
10. Genes, Environment and Health Initiative invests in genetic studies, environmental monitoring
11. Rutgers Genetics receives $7.8 million for autism research
Post Your Comments:
(Date:5/6/2017)... , May 5, 2017 ... just announced a new breakthrough in biometric authentication ... exploits quantum mechanical properties to perform biometric authentication. These ... smart semiconductor material created by Ram Group and ... finance, entertainment, transportation, supply chains and security. Ram ...
(Date:4/19/2017)... ALBANY, New York , April 19, 2017 /PRNewswire/ ... highly competitive, as its vendor landscape is marked by ... in the market is however held by five major ... and Safran. Together these companies accounted for nearly 61% ... majority of the leading companies in the global military ...
(Date:4/17/2017)... 17, 2017 NXT-ID, Inc. (NASDAQ: NXTD ... filing of its 2016 Annual Report on Form 10-K on Thursday ... ... available in the Investor Relations section of the Company,s website at ... website at . 2016 Year Highlights: ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program Committee ... honoring scientists who have made outstanding contributions to analytical chemistry and applied ... the world’s leading conference and exposition for laboratory science, which will be held ...
(Date:10/9/2017)... , ... October 09, 2017 , ... The award-winning American ... broadcast first quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. , ... faced with the challenge of how to continue to feed a growing nation. At ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree Wellness Center ... the needs of consumers who are incorporating medical marijuana into their wellness and ... , As operators of two successful Valley dispensaries, The Giving Tree’s two founders, ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... providing advanced instruments and applications consulting for microscopy and surface analysis, Nanoscience ... application consulting, Nanoscience Analytical offers a broad range of contract analysis services ...
Breaking Biology Technology: