Navigation Links
Genes may travel from plant to plant to fuel evolution
Date:2/16/2012

PROVIDENCE, R.I. [Brown University] The evolution of plants and animals generally has been thought to occur through the passing of genes from parent to offspring and genetic modifications that happen along the way. But evolutionary biologists from Brown University and the University of Sheffield have documented another avenue, through the passing of genes from plant to plant between species with only a distant ancestral kinship.

How this happened is unclear. But the researchers show that not only did a grouping of grasses pass genes multiple times over millions of years, but that some of the genes that were transferred became integral cogs to the plants' photosynthetic machinery, a critical distinguishing feature in C4 plants, which dominate in hot, tropical climes and now make up 20 percent of the Earth's vegetational covering.

"As far as we know, this is the first case where nuclear genes that have been transmitted between plants have been incorporated into the primary metabolism and contributed to the evolution of a new trait, in this case C4 photosynthesis," said Pascal-Antoine Christin, a postdoctoral researcher in the Department of Ecology and Evolutionary Biology at Brown.

In a paper published in Current Biology, the researchers from Brown, Sheffield, and other universities in the United States, United Kingdom, and France investigated the ancestry of two genes encoding enzymes important in C4 photosynthesis phosphoenolpyruvate carboxylase (ppc) and phosphoenolpyruvate carboxykinase (pck) and these enzymes' historical presence and function in a common and well-studied grass, Alloteropsis. The biologists initially studied the genes in closely related species, three C4 plants (Alloteropsis angusta, Alloteropsis cimicina, and Alloteropsis semialata) and one C3 plant (Alloteropsis eckloniana). The goal was to learn the evolutionary history of the ppc and pck genes, which were present in their C3 common ancestor and were thought to have been adapted to aid in photosynthesis in the offspring C4 plants.

"People were wondering how these genes evolved. The global assumption was that an ancestor had the genes, but they weren't involved in photosynthesis, and so were later modified to become C4 photosynthetic agents," said Christin, the paper's corresponding author.

To test the hypothesis, the scientists took a wider view, surveying C4 plants in which the ppc enzyme was integral to photosynthesis and plants where the enzyme was present but had no photosynthetic role. They figured the ppc enzymes used in C4 photosynthesis would be closely related to the non-photosynthetic genes from closely related C3 plants, given their common ancestry.

Instead, the ppc genes involved in C4 photosynthesis were closely related to ppc genes of other C4 species with no close relation in the phylogeny, or family tree. Closer analysis also revealed these plants sharing photosynthetic ppc enzymes had diverged as many as 20 million years ago; the new finding is that despite these ancestral divergences, they exchanged genes.

In all, the researchers documented four instances in which the ppc enzyme or the pck enzyme found in the Alloteropsis C4 plants popped up in other C4 clades Andropogoneae, Cenchrinae and Melinidinae. These clades include such diverse species as corn, foxtail millet, and guinea grass.

"We've long understood how evolutionary adaptations are passed from parents to offspring. Now we've discovered in plants that they can be passed between distant cousins without direct contact between the species," added Colin Osborne, an evolutionary biologist from the University of Sheffield and a corresponding author on the paper.

"What is so exciting here is that these genes are moving from plant to plant in a way we have not seen before," said Erika Edwards, assistant professor of biology at Brown and the second author on the paper. "There is no host-parasite relationship between these plants, which is usually what we see in this kind of gene movement."

Scientists call this evolutionary event "lateral gene transfer." The question, then, how are the plants passing their genes? The best guess at this point is that genetic material carried airborne in pollen grains land on a different species and a small subset of genes somehow get taken up by the host plant during fertilization. Such "illegitimate pollination events," as Edwards described it, have been seen in the laboratory. "There are reproductive mishaps that occur. In some cases, these could turn out to be highly advantageous," she said.

Christin, Osborne and Edwards think gene-swapping among plants continues today. "Is it good? Bad? I don't know," Christin said. "It's good for the plants. It means that plants can adapt to new environments by taking genes from others."

"It's like a short cut," Edwards added, "that could present itself as a mechanism for rapid evolution."


'/>"/>
Contact: Richard Lewis
Richard_Lewis@brown.edu
401-863-3766
Brown University
Source:Eurekalert  

Related biology news :

1. £2 million study to reveal workings of dementia genes
2. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
3. NIHs Genes, Environment and Health Initiative adds 6 studies
4. Scientist plans to test for blood pressure genes affected by age
5. Fishy future written in the genes
6. New tool probes function of rice genes
7. Brainy genes, not brawn, key to success on mussel beach
8. Researchers continue to find genes for type 1 diabetes
9. Genes that control cell death fingered in age-related hearing loss
10. Mapping a clan of mobile selfish genes
11. NJIT professor finds engineering technique to identify disease-causing genes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Genes may travel from plant to plant to fuel evolution
(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
(Date:3/29/2016)... 29, 2016 LegacyXChange, Inc. (OTC: ... and SelectaDNA/CSI Protect are pleased to announce our successful ... a variety of writing instruments, ensuring athletes signatures against ... collectibles from athletes on LegacyXChange will be assured of ... DNA. Bill Bollander , CEO states, ...
(Date:3/22/2016)... India , March 22, 2016 /PRNewswire/ ... market research report "Electronic Sensors Market for Consumer ... Proximity, & Others), Application (Communication & IT, ... Geography - Global Forecast to 2022", published ... industry is expected to reach USD 26.76 ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... Brooklyn, NY (PRWEB) , ... June 24, 2016 , ... ... 15mm, machines such as the Cary 5000 and the 6000i models are higher end ... height is the height of the spectrophotometer’s light beam from the bottom of the ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... Apellis Pharmaceuticals, Inc. today announced positive ... its complement C3 inhibitor, APL-2. The trials were ... studies designed to assess the safety, tolerability, pharmacokinetics ... healthy adult volunteers. Forty subjects were ... dose (ranging from 45 to 1,440mg) or repeated ...
Breaking Biology Technology: