Navigation Links
Generating ethanol from lignocellulose possible, but large cost reductions still needed
Date:11/8/2011

The production of ethanol from lignocellulose-rich materials such as wood residues, waste paper, used cardboard and straw cannot yet be achieved at the same efficiency and cost as from corn starch. A cost comparison has concluded that using lignocellulose materials is unlikely to be competitive with starch until 2020 at the earliest. The study, published in the international journal Biofuels, Bioproducts & Biorefining, did identify many opportunities for reducing costs and improving income within the lignocellulose-to-ethanol process, and provides insight into the priority areas that must be addressed in coming years.

Ethanol can be blended with gasoline to reduce our dependency on fossil fuels. The last 15 years has seen a massive growth of so-called first-generation processes that use enzymes and bacteria to turn the starch and sugars in corn and sugarcane into ethanol. But corn and sugarcane are also important components of the human food web, so using them for ethanol production has the potential to affect the price and availability of these basic commodities.

On the other hand, lignocellulose materials are often hard to dispose of, but they are rich in sugars that can be fermented into ethanol following appropriate processing. "Not only is cellulose the most abundant polymer on Earth, it cannot be digested by humans, so using it for fuel production does not compete directly with food supplies," says the study's lead author Jamie Stephen, who works in the Department of Wood Science at the University of British Columbia in Vancouver, Canada. The race is on to commercialize this second generation ethanol.

Stephen's work focuses on the fact that the cost of building large scale ethanol-producing facilities will likely be higher for second generation ethanol compared to first generation technologies. One reason is that sources of lignocellulose may require significant and costly pre-treatment. "Researchers and companies are going to have to concentrate on reducing the cost of pretreatment and increasing the output of the digester in order to reduce the costs of the lignocellulose-to-ethanol process," says Stephen.

Another reason costs are higher is that lignocellulose is made of multiple kinds of sugar, while corn starch consists of pure glucose. Corn starch can be reduced to glucose with low-cost amylase enzymes, while pre-treated lignocellulose requires a cocktail of cellulase enzymes. Providing these enzymes is one of the major costs of the whole process, but you currently need 12 times more cellulase than amylase protein to generate the same amount of ethanol from woody biomass. "Despite much effort and progress over the last few years, the cost of using cellulase enzymes is still significantly higher than for amylase-based processes, and will need to be reduced substantially before lignocellulose starts to become competitive with corn and sugarcane as a feedstock," says Stephen.

Finally, while the input to sugarcane- and corn starch-based systems is fairly constant, the feedstocks that go into lignocellulose systems are much more variable. Different species of tree produce wood that has different properties, and waste paper and agricultural wastes will have many different types of material in them. To get maximum efficiency, each type of biomass needs to be processed under different conditions, which introduces another challenge for anyone wanting to make ethanol from these materials.

Overall Stephen believes we have a considerable way to go before second-generation ethanol production will be ready for commercialisation. "Production requires significant cost reductions and at least the same level of financial support that was given to the first-generation systems if second-generation ethanol is going to be fully competitive by 2020," says Stephen.


'/>"/>
Contact: Michelle Martella
physicalsciencenews@wiley.com
781-388-8577
Wiley-Blackwell
Source:Eurekalert

Related biology news :

1. Regenerating eyes using cells from hair: Stem Cells awards research into stem cell deficiency
2. Legume ipmPIPE: A new option for generating, summarizing and disseminating real-time pest data
3. BCIU Applauds Presidential Summit on Entrepreneurship, Sees Efforts Generating Goodwill, Partnerships and Jobs
4. Novel strategy for generating induced pluripotent stem cells for clinical use is safe and efficient
5. Just like old times: Generating RNA molecules in water
6. Master regulator found for regenerating nerve fibers in live animals
7. NIH funds work at WPI on regenerating heart tissue and preventing urinary tract infections
8. Fat-regenerating stem cells found in mice
9. Research offers means to detoxify mycotoxin-contaminated grain intended for ethanol, animal feed
10. A new catalyst for ethanol made from biomass
11. Switch from corn to grass would raise ethanol output, cut emissions
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/6/2017)... 5, 2017  SomaLogic announced today that it ... established by iCarbonX, the China ... "Global Digital Health Ecosystem that can define each ... individual,s biological, behavioral and psychological data, the Internet ... companies, SomaLogic will provide proteomics data and applications ...
(Date:1/3/2017)... VEGAS , Jan. 3, 2017 Onitor, ... the introduction of Onitor Track, an innovative biometric data-driven ... men, showcasing this month at the 2017 Consumer Electronics ... In the U.S., the World Health ... more than two-thirds of adults who are overweight or ...
(Date:12/20/2016)... and GENEVA, Dec, 20, 2016   Valencell ... sensor technology, and STMicroelectronics (NYSE: STM), a ... of electronics applications, announced today the launch of ... for biometric wearables that includes ST,s compact ... Valencell,s Benchmark™ biometric sensor system. Together, SensorTile ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... LAKES, N.J. , Jan. 18, 2017 BD (Becton, ... technology company, announced today that it will host a live webcast ... at 1 p.m. (ET). The webcast can be ... be available for replay through Tuesday, January 31, 2017. ... About BD BD ...
(Date:1/18/2017)... 2017 Applied BioMath ( www.appliedbiomath.com ), ... research and development, today announced that Dr. ... of Applied BioMath, will present at the next ... Meeting on Thursday January 19, 2017 at the ... MA.   Dr. Burke,s talk "Quantitative Modeling and Simulation ...
(Date:1/18/2017)... ... January 18, 2017 , ... Whitehouse Labs ... Within Albany Molecular Research, Inc. (AMRI), the scientific staff dedicated to Extractables / ... planned for further growth in 2017. Extractable & Leachable evaluations have become increasingly ...
(Date:1/18/2017)... KING OF PRUSSIA, PA (PRWEB) , ... January ... ... to disrupt clinical operations again at the CHI SCOPE Summit for Clinical Ops ... and AstraZeneca in engaging panel discussions to examine vital clinical research issues such ...
Breaking Biology Technology: