Navigation Links
Gene technology helps deceive greedy pest insects
Date:7/31/2012

Worldwide cabbage farmers have vast problems with the diamond-back moth. It lays its eggs on the cabbage plants and the voracious appetite of the larvae ruins the yield. However, Morten Emil Mldrup from the University of Copenhagen has developed a method to deceive the greedy insects. Mldrup presents his spectacular research results at a public PhD defense on Friday 3 August.

"We have discovered a way to cheat the diamond-back moths to lay their eggs on tobacco plants. As their larvae cannot survive on tobacco leaves they will soon starve to death. In the mean time you can cultivate your cabbage at peace," explains MSc in Biology and Biotechnology Morten Emil Mldrup from DynaMo, Center for Dynamic Molecular Interactions, University of Copenhagen.

It sounds like an imaginative scenario too good to be true. None the less Morten Emil Mldrup and his colleagues from DynaMo at University of Copenhagen have shown that it is indeed possible 'to cheat' the greedy little insects in exactly this way. Morten Emil Mldrup has studied the defence compounds of the cabbage family, the so called glucosinolates, exhaustively. Glucosinolates are toxic to cabbage pests in general, the diamond-back moth being one of very few exemptions.

Away with pesticides

The odour of the cabbage defense compounds attracts the pregnant diamond-back moths. To them the 'defence odour' is a signal of an ideal place to lay their eggs. In this way they ensure their larvae plenty of food without competition from others. After having thoroughly established how a cabbage plants produces defence compounds, Morten Emil Mldrup and his colleagues have successfully transferred the genes responsible for the production of glucosinolates from cabbage into tobacco plants.

"Our experiments show that it is indeed possible to fool the diamond-back moth to lay its eggs on tobacco plants. This is fantastic because the larvae are a major problem all over the world. At present we are aiming at making glucosinolate producing potato plants. The goal is to avoid diamond-back moths' larvae in cabbage by cultivating potato and cabbage plants together. In this way a lot of money is to be saved, and in addition the growers do not need to use the big amounts of pesticides commonly used today. In this way one may say that our discovery is also of benefit to nature," Morten Emil Mldrup tells.

Defense against attacks

Morten Emil Mldrup researches the bioactive molecules that plants are using to protect themselves against pests and how the plants produce these natural defence compounds.

Morten Emil Mldrup's PhD thesis is comprised of six journal articles. The thesis focus on two important plant defence compounds and their biosynthetic pathways and elucidates how biotechnological use of these compounds can pave the way for future crop protection.


'/>"/>
Contact: Morten Emil Mldrup
moem@life.ku.dk
45-61-30-93-20
University of Copenhagen
Source:Eurekalert

Related biology news :

1. Breakthrough technology focuses in on disease traits of single cells
2. University of Tennessee Space Institute researchers develop laser technology to fight cancer
3. Geosphere: How geology, technology, modeling, and mapping see into Earths past and present
4. RIH study: Emergency patients prefer technology-based interventions for behavioral issues
5. Engineering technology reveals eating habits of giant dinosaurs
6. Security Technology Executive, SIA and ISC East announce Security Innovation Awards Collaboration
7. Technology deal for next generation production of green whistle
8. Advanced Membrane Technology V Conference
9. University of North Texas Health Science Center Advances Forensic Research by Investing in Semiconductor DNA Sequencing Technology
10. Next-generation sequencing technology opens doors to discoveries
11. Weizmann Institute solar technology to convert greenhouse gas into fuel
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2017)... ITHACA, N.Y. , June 23, 2017 ... a leader in dairy research, today announced a new ... help reduce the chances that the global milk supply ... this dairy project, Cornell University has become the newest ... Food Supply Chain, a food safety initiative that includes ...
(Date:5/6/2017)... 2017 RAM Group , Singaporean ... breakthrough in biometric authentication based on a ... to perform biometric authentication. These new sensors are based ... by Ram Group and its partners. This sensor will ... chains and security. Ram Group is a next ...
(Date:4/13/2017)... 13, 2017 UBM,s Advanced Design and Manufacturing ... feature emerging and evolving technology through its 3D Printing ... run alongside the expo portion of the event and ... demonstrations focused on trending topics within 3D printing and ... manufacturing event will take place June 13-15, 2017 at the ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... BARBARA, CALIFORNIA (PRWEB) , ... October 10, 2017 ... ... management, technological innovation and business process optimization firm for the life sciences and ... BoxWorks conference in San Francisco. , The presentation, “Automating GxP Validation ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer television ... quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With global ... the challenge of how to continue to feed a growing nation. At the same ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... medical journal, Epilepsia, Brain Sentinel’s SPEAC® System which uses the surface electromyography ... generalized tonic-clonic seizures (GTCS) using surface electromyography (sEMG). The prospective multicenter phase ...
(Date:10/7/2017)... Mass. , Oct. 6, 2017  The ... work of three scientists, Jacques Dubochet, Joachim ... breakthrough developments in cryo-electron microscopy (cryo-EM) ... technology within the structural biology community. The winners ... Scientists can now routinely produce highly resolved, three-dimensional ...
Breaking Biology Technology: