Navigation Links
Gene regulatory protein is reduced in bipolar disorder

BOSTON -- Low levels of a brain protein that regulates gene expression may play a role in the origin of bipolar disorder, a complex and sometimes disabling psychiatric disease. As reported in the latest issue of Bipolar Disorders, the journal of The International Society for Bipolar Disorders, levels of SP4 (specificity protein 4) were lower in two specific regions of the brain in postmortem samples from patients with bipolar disorder. The study suggests that normalization of SP4 levels could be a relevant pharmacological strategy for the treatment of mood disorders.

"We found that levels of SP4 protein in the brain's prefrontal cortex and the cerebellum were lower in postmortem samples from patients with bipolar disorder, compared with samples from control subjects who did not have the disease," said co-senior author Grace Gill, PhD, an associate professor in the department of anatomy and cellular biology at Tufts University School of Medicine and a member of the neuroscience; genetics; and cell, molecular and developmental biology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts.

Gill's laboratory team at Tufts collaborated with researchers from Spain and used postmortem samples from Spain's University of the Basque Country brain collection program to examine SP4 protein levels in samples from 10 bipolar subjects and 10 control subjects matched for gender, age, and time since death.

The team focused on the prefrontal cortex and the cerebellum because brain imaging studies suggest that bipolar disorder is associated with changes in the structure of these brain regions. Little is known about the cellular and molecular changes that occur in bipolar disorder, especially in the cerebellum.

"Our findings suggest that reduced activity of the SP4 protein may be common in bipolar disorder," stated co-senior author Beln Ramos, PhD, a former postdoctoral fellow in Gill's lab and now a researcher at the Parc Sanitari Sant Joan de Du (PSSJD) and the Centro de Investigacin Biomdica en Red de Salud Mental (CIBERSAM) in Barcelona, Spain.

Ramos explained that SP4 belongs to a category of proteins known as transcription factors, which regulate gene expression. "While this study examined the SP4 protein levels, mutations in the gene encoding the SP4 protein have been associated with psychiatric diseases including bipolar disorder, a poorly understood disease characterized by episodes of abnormally elevated energy levels with or without depressive episodes, as well as schizophrenia, and major depressive disorder. Thus, our study adds to the growing body of evidence that alterations in gene regulation contribute to the development of psychiatric disorders," said Ramos.

Further analysis showed that SP4 levels are regulated by neuronal activity, indicating that this transcription factor is important for normal neuronal signaling. "Looking at normal rat neurons in culture, we found that SP4 is rapidly degraded by enzymes in the absence of neuronal signaling, which we refer to as the non-depolarized state," said first author Raquel Pinacho, BS, MS, a graduate student in Ramos' lab in PSSJD.

In previous work, the researchers had identified an essential role for SP4 in regulating the structure of nerve cells during development. Taken together, the findings suggest that reduced levels of this protein may contribute to altered patterns of nerve cells in the brain.

"Moreover," added Ramos, "we demonstrated that the destruction of SP4 by enzymes was inhibited by lithium, a drug widely used as a mood stabilizer for patients with bipolar disorder. When lithium was added to cells in the non-depolarized -- inactive -- state, levels of SP4 were stabilized and increased. This finding suggests that the therapeutic effects of lithium may be related, at least in part, to changes in gene expression leading to changes in cellular structure and function."

In addition to measuring levels of SP4, Gill and colleagues assessed levels of SP1, a related transcription factor protein that has been reported to be altered in schizophrenia. Like SP4, SP1 was reduced in the cerebellum of subjects with bipolar disorder. According to the authors, this finding suggests that both factors may be relevant transcriptional regulators, low levels of which may contribute to the pathogenesis of bipolar disorder and other psychiatric diseases. However, unlike SP4, levels of SP1 did not appear to be regulated by neuronal activity, highlighting the complexity of the mechanisms involved in functional specificity in the SP transcription factor family.

Contact: Siobhan E. Gallagher
Tufts University, Health Sciences Campus

Related biology news :

1. New regulatory mechanism discovered for cell identify and behavior in forming organs
2. Caltech researchers help unlock the secrets of gene regulatory networks
3. New data suggest jumping genes play a significant role in gene regulatory networks
4. Food counterfeiting, contamination outpace international regulatory systems
5. Regulatory molecule for tumor formation or suppression identified by Singapore, US researchers
6. USC researchers identify regulatory genetic sequences that may predict risk for prostate cancer
7. Regulatory role of key molecule discovered at Hebrew U.
8. Technique finds gene regulatory sites without knowledge of regulators
9. Novel regulatory process for T cells may help explain immune system diseases
10. Medusa-structure of gene regulatory network: Dominance of transcription factors in cancer subtypes
11. Systech International and Zetes Partner to Meet Europes Emerging Pharmaceutical Regulatory Requirements
Post Your Comments:
(Date:11/11/2015)... MINNETONKA, Minn. , Nov. 11, 2015   MedNet ... the entire spectrum of clinical research, is pleased to announce ... Partnerships in Clinical Trials (PCT) event, to be held ... will be able to view live demonstrations of ... platform, and learn how iMedNet has been able ...
(Date:11/9/2015)... DUBLIN , Nov. 09, 2015 /PRNewswire/ ... announced the addition of the "Global ... to their offering. --> ... "Global Law Enforcement Biometrics Market 2015-2019" ... Research and Markets ( ) ...
(Date:11/2/2015)... PARK, Calif. , Nov. 2, 2015  SRI ... $9 million to provide preclinical development services to the ... the contract, SRI will provide scientific expertise, modern testing ... wide variety of preclinical pharmacology and toxicology studies to ... --> The PREVENT Cancer Drug Development ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015  Asia-Pacific (APAC) ... research organisation (CRO) market. The trend of outsourcing ... lower margins but higher volume share for the ... and scale, however, margins in the CRO industry ... (CRO) Market ( ), finds that ...
(Date:11/24/2015)... Worcester, Mass. (PRWEB) , ... November 24, 2015 ... ... need to maintain healthy metabolism. But unless it is bound to proteins, copper ... Institutes of Health (NIH), researchers at Worcester Polytechnic Institute (WPI) will conduct a ...
(Date:11/24/2015)... , ... November 24, 2015 , ... This fall, global ... competitive events in five states to develop and pitch their BIG ideas to improve ... each state are competing for votes to win the title of SAP's Teen Innovator, ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna ... announced today that the remaining 11,000 post-share consolidation ... Purchase Warrants (the "Series B Warrants") subject to ... exercised on November 23, 2015, which will result ... After giving effect to the issuance of such ...
Breaking Biology Technology: