Navigation Links
Gene is likely cause of stroke-inducing vascular malformations

UCSF scientists have discovered that a gene controlling whether blood vessels differentiate into arteries or veins during embryonic development is linked to a vascular disorder in the brain that causes stroke.

The UCSF studies were done in mice, and the new findings are the first to provide information on both the progression and regression of this particular brain disorder, known as BAVM, and to provide molecular clues into the disease, which is not well-understood and chiefly affects young people.

BAVM, for brain arteriovenous malformation, is a vascular disorder causing arteries and veins to be directly connected, rather than through capillaries. This direct connection produces enlarged, tangled masses of vessels that are prone to hemorrhagic rupture, bleeding and stroke. Because they develop most often in growing tissues, BAVMs are responsible for half of the hemorrhagic strokes in children.

Study findings were published in a recent issue (Aug. 5, 2008) of the Proceedings of the National Academy of Sciences.

The UCSF team identified the gene, known as Notch, as a potential cause of BAVMs because of its role in directing embryonic blood vessel formation. Using genetic tools, the team "turned on" a constantly active Notch gene in endothelial brain cells, which are the cells lining blood vessels in the brain, and found that BAVMs were induced. When researchers turned the gene off, the mice exhibited full recovery from the disease's progression.

"This was exciting. The activated Notch gene caused BAVM in all of the mice, making it an unprecedented, potent molecular lesion in the induction of the pathology," said Rong Wang, PhD, senior author on the study, associate professor and director of the Laboratory for Accelerated Vascular Research and Mildred V. Strouss Endowed Chair in Vascular Surgery at UCSF. "Furthermore, we found that repression of the gene in already-ill mice led to their recovery."

Approximately one million people worldwide suffer from BAVMs, though very little is known about the molecular mechanisms that cause them. Results from an ongoing clinical trial funded by the National Institutes of Health on the effectiveness of brain surgery, the only treatment option for the disease, questions whether the risks associated with surgery outweigh the risk of "waiting for a rupture," the UCSF researchers say.

"Our study offers hope for future treatments because even the effects of stroke such as paralysis and ataxia, or loss of muscle coordination, were reversed once we turned off Notch," said Patrick A. Murphy, lead author on the paper and a graduate student from the UCSF Biomedical Science Program, working with Wang. "This pathway has not yet been implicated in human disease, so these findings prompted our ongoing research into Notch signaling and allow us to examine the cellular and molecular mechanisms of BAVM."

Knowledge gained about development of BAVM may also shed light on the process of blood vessel disease in other organs like the lung and liver, according to the UCSF team. "In the future, we may be able to inhibit or even reverse the disease process," said Tyson Kim, co-author on the paper and a bioengineering graduate student from the UCSF MD/PhD combined program, working with Wang.

Based on the study findings, the UCSF team now considers Notch a strong candidate as a key regulator of human BAVM and is undertaking additional research to find the disease's cause. In addition to using the mouse model to study disease progression and regression, Wang and colleagues also are studying the gene's role in human AVMs by examining levels of Notch signaling pathway molecules in surgical tissue samples.

"Although more work needs to be done to determine whether the research can be applied to clinical practice and whether up-regulation of Notch causes BAVM and stroke in humans, identifying the role of this pathway offers hope for developing treatments for this and other related diseases," Wang said.


Contact: Lauren Hammit
University of California - San Francisco

Related biology news :

1. Thawing permafrost likely to boost global warming
2. Extinction most likely for rare trees in the Amazon rainforest
3. Likely cause of postpartum blues and depression identified
4. Stem cell chicken and egg debate moves to unlikely arena: the testes
5. Revolutionary chefs? Not likely, shows physics research
6. U of M research finds teens who have TV in their bedroom are less likely to engage in healthy habits
7. Baby boys are more likely to die than baby girls
8. Unfavorable ocean conditions likely cause of low 2007 salmon returns along West Coast
9. New study shows low-fat diets more likely to reduce risk of heart disease than low-carb diets
10. Coral reefs unlikely to survive in acid oceans
11. Journal Sleep: Insomniacs are more likely to report a family history of the sleep disorder
Post Your Comments:
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:4/14/2016)... Israel , April 14, 2016 ... Authentication and Malware Detection, today announced the appointment of ... assumed the new role. Goldwerger,s leadership appointment ... on the heels of the deployment of its platform ... BioCatch,s behavioral biometric technology, which discerns unique cognitive and ...
(Date:3/31/2016)... 2016   LegacyXChange, ... "Company") LegacyXChange is excited to release its ... to be launched online site for trading 100% guaranteed ... will also provide potential shareholders a sense of the ... an industry that is notorious for fraud. The video ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... Durham, NC (PRWEB) , ... June 23, 2016 , ... ... Odense University Hospital in Denmark detail how a patient who developed lymphedema after being ... (fat) tissue. The results could change the paradigm for dealing with this debilitating, frequent ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only free validated ... will showcase its product’s latest features from June 26 to June 30, 2016 ... on Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug ...
Breaking Biology Technology: