Navigation Links
Gene hunters tackle crop diseases
Date:12/10/2010

Norwich scientists are on the trail of some of the most economically damaging organisms that infect crops worldwide. Their latest targets are the parasitic water fungus that causes powdery mildew and the water molds that cause late blight in potatoes and tomatoes and downy mildew in cruciferous vegetables and other crops.

"We have been studying the late blight pathogen for a while," said Professor Sophien Kamoun, head of the Sainsbury Laboratory on the Norwich Research Park. "In separate research we are trialling plant genes that mediate blight resistance, while in this latest study we have learnt more about how the pathogen itself evolved and which genes we should focus on to tackle it."

The scientists compared the genome of the potato blight pathogen to the genomes of four sister species that infect plants as diverse as morning glory and the ornamental four o-clock. These closely related pathogens are from Mexico, the centre of origin of the late blight pathogen.

The analysis showed that some sections of the genome are slow to evolve and are highly similar between the sister species. Other sections are more dynamic and allow the pathogen to quickly jump hosts to infect and adapt to new plant species.

"Our aim is to develop resistance to genes from the stable, slowly-evolving region of the pathogen's genome," said Professor Kamoun.

"This should be more disruptive to the pathogen's ability to evolve new races."

Published in the same edition of the journal Science are two studies focusing on mildews. Like the late blight pathogen, the parasite that causes downy mildew is a kind of water mold or oomycete. The oomycetes are fungal-like organisms that have evolved from marine algae. Downy mildew causes yellow patches and fuzzy white mould on the leaves of many crops including crucifers, maize, grapes and lettuce. Powdery mildew is a fungal disease of barley that is most damaging in cool, wet climates.

"A major focus of our research is sustainable agriculture," said John Innes Centre director Professor Dale Sanders.

"We need to help breeders and farmers generate good quality food and other agricultural products in an environmentally sustainable way. One way of doing so will be to develop crops that are resistant to pathogens and pests. Such crops will reduce the need to spray pesticides and fungicides and they will give better yields, as less will be lost to disease."

The genomes of the parasites have been sequenced in separate research collaborations, one involving John Innes Centre scientists and the other The Sainsbury Laboratory. The genomes were compared with those of closely related species.

Analysis revealed that the parasites have discarded many genes. They have become specialised to live solely on their plant host and have dispensed with the genes that would be needed to survive elsewhere. Instead they have focussed on genes that help them stealthily take control of host cells. The genome sequences reveal large numbers of effector proteins, the molecules that invade plant cells to suppress plant immunity.


'/>"/>

Contact: Zoe Dunford
zoe.dunford@bbsrc.ac.uk
44-160-325-5111
Norwich BioScience Institutes
Source:Eurekalert  

Related biology news :

1. Brain size determines whether fish hunters or slackers
2. Man-made global warming started with ancient hunters
3. U of Minnesota-led study finds that hunters are depleting lion and cougar populations
4. Plant disease stealth bomber tactics subverted to tackle hundreds of plant pathogens
5. New public health goals tackle obstacles to breastfeeding success
6. International malaria research consortium tackles deadly disease
7. Plagiarism sleuths tackle full-text biomedical articles
8. Gaming for a cure: Computer gamers tackle protein folding
9. Top scientists tackle the issue of HIV persistence
10. Rice yields researched to tackle food security issues
11. JHSPH faculty tackles immune system differences between the sexes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Gene hunters tackle crop diseases
(Date:3/31/2016)... BOCA RATON, Florida , March 31, 2016 /PRNewswire/ ... LEGX ) ("LegacyXChange" or the "Company") ... presentation for potential users of its soon to be ... The video ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also ... by the use of DNA technology to an industry ...
(Date:3/22/2016)... OTTAWA, Ontario , PROVO ... 2016 Newborn Screening Ontario (NSO), which operates ... for molecular testing, and Tute Genomics and ... process management technology respectively, today announced the launch of ... new next-generation sequencing (NGS) testing panel. ...
(Date:3/15/2016)... Yissum Research Development Company of the Hebrew University ... University, announced today the formation of Neteera Technologies ... biological indicators. Neteera Technologies has completed its first round ... Neteera,s ... from sweat ducts, enables reliable and speedy biometric identification, ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... ... May 03, 2016 , ... ... the sensor and data driven conferences, will take place on June 7-8, 2016, at the New ... Vidya Raman-Tangella on incorporating technology -- including AR/VR, machine learning, apps, robotics and AI ...
(Date:5/3/2016)... Los Angeles, Calif (PRWEB) , ... May 03, ... ... network of industry leading fertility clinics and IVF laboratories. A contingency of reproductive ... Fertility™ to treat men and women experiencing infertility and to help them build ...
(Date:5/2/2016)... ... May 02, 2016 , ... ... on the pre-launch success of their revolutionary, veterinarian-designed product for indoor cats. The ... trap, and play with their food the way nature intended. NoBowls make cats ...
(Date:4/29/2016)... 2016 According to a ... "Separation Systems for Commercial Biotechnology Market - Global ... 2015 - 2023", the separation systems for commercial ... in 2014 and is projected to expand at ... to reach US$ 19,227.8 Mn in 2023. ...
Breaking Biology Technology: