Navigation Links
Gene helps plants use less water without biomass loss
Date:1/11/2011

WEST LAFAYETTE, Ind. - Purdue University researchers have found a genetic mutation that allows a plant to better endure drought without losing biomass, a discovery that could reduce the amount of water required for growing plants and help plants survive and thrive in adverse conditions.

Plants can naturally control the opening and closing of stomata, pores that take in carbon dioxide and release water. During drought conditions, a plant might close its stomata to conserve water. By doing so, however, the plant also reduces the amount of carbon dioxide it can take in, which limits photosynthesis and growth.

Mike Mickelbart, an assistant professor of horticulture; Mike Hasegawa, a professor of horticulture; and Chal Yul Yoo, a horticulture graduate student, found that a genetic mutation in the research plant Arabidopsis thaliana reduces the number of stomata. But instead of limiting carbon dioxide intake, the gene creates a beneficial equilibrium.

"The plant can only fix so much carbon dioxide. The fewer stomata still allow for the same amount of carbon dioxide intake as a wild type while conserving water," said Mickelbart, whose results were published in the early online version of the journal The Plant Cell. "This shows there is potential to reduce transpiration without a yield penalty."

Mickelbart and Yoo used an infrared gas analyzer to determine the amount of carbon dioxide taken in and water lost in the Arabidopsis mutant. Carbon dioxide is pumped into a chamber with the plant and the analyzer measures the amount left after a plant has started to take up the gas. A similar process measures water lost through transpiration, in which water is released from a plant's leaves.

Analysis showed that the plant, which has a mutant form of the gene GTL1, did not reduce carbon dioxide intake but did have a 20 percent reduction in transpiration. The plant had the same biomass as a wild type of Arabidopsis when its shoot dry weight was measured.

"The decrease in transpiration leads to increased drought tolerance in the mutant plants," Yoo said. "They will hold more water in their leaves during drought stress."

Of the 20 genes known to control stomata, SDD1 was highly expressed in the mutant. SDD1 is a gene that is responsible for regulating the number of stomata on leaves. In the mutant, with GTL1 not functioning, SDD1 is highly expressed, which results in the development of fewer stomata.

Mickelbart said the finding is important because it opens the possibility that there is a natural way to improve crop drought tolerance without decreasing biomass or yield. He said the next step in the research is to determine the role of GTL1 in a crop plant.


'/>"/>

Contact: Brian Wallheimer
bwallhei@purdue.edu
765-496-2050
Purdue University
Source:Eurekalert

Related biology news :

1. MSU scientists find new gene that helps plants beat the heat
2. Extreme nature helps scientists design nano materials
3. Diatom genome helps explain success in trapping excess carbon in oceans
4. Waste from gut bacteria helps host control weight, UT Southwestern researchers report
5. Swamping bad cells with good in ALS animal models helps sustain breathing
6. Boost from McGill, Gates Foundation helps Africans control pharma research
7. Study helps clarify role of soil microbes in global warming
8. New book helps medical students master clinical skills
9. New research helps explain genetics of Parkinsons disease
10. Exercise helps overweight children reduce anger expression
11. Tool helps identify gene function in soybeans
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/21/2016)... , Nov. 21, 2016   Neurotechnology , ... recognition technologies, today announced that the MegaMatcher On ... was submitted for the NIST Minutiae Interoperability ... all the mandatory steps of the evaluation protocol. ... a continuing test of fingerprint templates used to ...
(Date:11/15/2016)... Md. , Nov. 15, 2016  Synthetic ... company developing therapeutics focused on the gut microbiome, ... offering of 25,000,000 shares of its common stock ... common stock at a price to the public ... proceeds to Synthetic Biologics from the offering, excluding ...
(Date:6/22/2016)... 22, 2016  The American College of Medical Genetics and ... Magazine as one of the fastest-growing trade shows during ... the Bellagio in Las Vegas . ... of growth in each of the following categories: net square ... number of attendees. The 2015 ACMG Annual Meeting was ranked ...
Breaking Biology News(10 mins):
(Date:12/7/2016)... ... December 07, 2016 , ... Kara Dwyer Dodge grew up hearing stories of the sea ... in Scituate, Mass., found a sea turtle entangled in the lines of one of his ... a minor sensation because no one could remember ever seeing one so large so close ...
(Date:12/6/2016)... ... 06, 2016 , ... The Osteoarthritis Research Society International (OARSI) ... (FDA) to consider OA as a serious disease. As an organization of professionals ... of OA patients, many of whom may experience progressive disability and decreased quality ...
(Date:12/6/2016)... ... December 06, 2016 , ... ... today announced it has acquired the assets of Theorem Clinical Research - ... focuses on clinical trial drug packaging, labeling, storage, reconciliation, and distribution for ...
(Date:12/6/2016)... PARK, Calif. , Dec. 6, 2016 /PRNewswire/ ... up to $150 million from the National Institutes ... Diseases and the Division of AIDS (NIAID-DAIDS) to ... and other non-vaccine pre-exposure (PreP) agents. Under the ... of preclinical product development services for candidate HIV-prevention ...
Breaking Biology Technology: