Navigation Links
Gene flow may help plants adapt to climate change
Date:6/28/2011

The traffic of genes among populations may help living things better adapt to climate change, especially when genes flow among groups most affected by warming, according to a UC Davis study of the Sierra Nevada cutleaved monkeyflower. The results were published online June 27 by the journal Proceedings of the National Academy of Sciences.

The findings have implications for conservation strategies, said Sharon Strauss, professor of evolution and ecology at UC Davis and an author of the study.

"In extreme cases where we might consider augmenting genetic resources available to imperiled populations, it might be best to obtain these genes from populations inhabiting similar kinds of habitats," Strauss said.

Graduate student Jason Sexton, with Strauss and Kevin Rice, professor of plant sciences, studied the monkeyflower (Mimulus laciniatus), an annual plant that lives in mossy areas of the Sierra at elevations of 3,200 feet to 10,000 feet.

Mountain gradients are useful for studying the effects of climate change, Strauss said, because they enable scientists to reproduce the effects of climate change without changing other factors, such as day length. The plants are already living across a range of temperatures, with those at lower elevations exposed to warmer conditions.

Sexton cross-pollinated monkeyflowers from two different locations at the warm, low-elevation edge of the plants' range with monkeyflowers from the middle of the range. All the hybrids were then grown in the field at the low end of the range.

As the researchers observed the growing monkeyflowers, they were able to test two contrasting predictions about how gene flow should affect plants at the edge of the range. The first prediction was that any mixing of genes from a wider population would help plants adapt to warming conditions. The second was that genes from the center of the range that did not help plants adapt would dilute any adaptive genes, negating their benefit.

"Gene flow" describes the movement of genetic traits within and among populations, as individual animals or plants breed.

To answer these questions, the researchers measured how the mixing of genes from different elevations affected the plants' ability to live at the warm edge of their range, through traits such as time for seedlings to emerge, time to flowering and overall reproductive success.

The study showed that the first prediction was true gene flow did help the plants adapt to a warmer environment.

"We generally found that there were benefits from gene flow, but gene flow from other warm-edge areas was most beneficial," Strauss said.

Sexton noted that hybrids of monkeyflowers from two warm-edge populations did better than either of their parents, perhaps because the populations had been using different genes to adapt to warm environments.

"When added together, their performance jumped," he said.

Often considered genetically meager, edge populations should be high-priority conservation targets since they may possess adaptations to their unique environments, Sexton said.


'/>"/>

Contact: Andy Fell
ahfell@ucdavis.edu
530-752-4533
University of California - Davis
Source:Eurekalert  

Related biology news :

1. Plants teach humans a thing or two about fighting diseases
2. Study reveals important aspects of signaling across cell membranes in plants
3. Healing times for dental implants could be cut
4. Adjustable valves gave ancient plants the edge
5. First-of-its-kind fluorescence map offers a new view of the worlds land plants
6. Tapping into plants is the key to combat climate change, says scientist
7. Researchers from the Viikki Biocenter discover how plants control the formation of wood cells
8. Medicines from plants
9. UF research aims to help preserve plants, animals caught between forest fragments
10. Turning plants into power houses
11. NRELs multi-junction solar cells teach scientists how to turn plants into powerhouses
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Gene flow may help plants adapt to climate change
(Date:5/24/2016)... care by providing unparalleled technology to leaders of the medical imaging industry.  As such, ... to the range of products distributed by Ampronix. Photo - http://photos.prnewswire.com/prnh/20160524/371420 ... ... ... With ...
(Date:5/3/2016)... May 3, 2016  Neurotechnology, a provider of ... MegaMatcher Automated Biometric Identification System (ABIS) , a ... projects. MegaMatcher ABIS can process multiple complex biometric ... combination of fingerprint, face or iris biometrics. It ... and MegaMatcher Accelerator , which have ...
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... 23, 2016 Apellis Pharmaceuticals, Inc. today ... trials of its complement C3 inhibitor, APL-2. The ... ascending dose studies designed to assess the safety, ... injection in healthy adult volunteers. Forty ... a single dose (ranging from 45 to 1,440mg) ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... at the Pennsylvania Convention Center and will showcase its product’s latest features from ... also be presenting a scientific poster on Disrupting Clinical Trials in The Cloud ...
(Date:6/23/2016)... 2016 ReportsnReports.com adds 2016 ... its pharmaceuticals section with historic and forecast data ... more. Complete report on the Cell ... 15 companies and supported with 261 tables and ... . The Global Cell Culture Media ...
Breaking Biology Technology: