Navigation Links
Gene discovery suggests way to engineer fast-growing plants
Date:11/11/2010

DURHAM, N.C. Tinkering with a single gene may give perennial grasses more robust roots and speed up the timeline for creating biofuels, according to researchers at the Duke Institute for Genome Sciences & Policy (IGSP).

Perennial grasses, including switchgrass and miscanthus, are important biofuels crops and can be harvested repeatedly, just like lawn grass, said Philip Benfey, director of the IGSP Center for Systems Biology. But before that can happen, the root system needs time to get established.

"These biofuel crops usually can't be harvested until the second or third year," Benfey said. "A method to improve root growth could have a major role in reducing the time to harvest for warm season grasses."

Benfey's team appears to have found a way to do just that. They took a directed genomic approach aimed at identifying genes that become active when cells stop dividing and start taking on the characteristics of the mature, adult cell they are to become. "We systematically looked for those genes that come 'on' precisely when cells transition from proliferation to differentiation and then turn 'off' again just as quickly," Benfey said.

That genome-wide search in the roots of the familiar laboratory plant Arabidopsis and subsequent screening of mutant lines turned up a single gene, which the researchers call UPBEAT1 (UPB1). Further study showed that UPB1 controls the gene expression of enzymes known as peroxidases.

They then showed that these peroxidases control the balance of free radicals between the zone of cell proliferation and the zone of cell elongation where differentiation begins. (Although free radicals are probably most familiar as agents of stress to be combated with antioxidants, Benfey noted that the balance of free radicals has also been implicated in the control of a similar transition from proliferation to differentiation in animals.)

When the researchers experimentally disrupted UPB1 activity in the plant root, it altered the balance of free radicals such that cells delayed their differentiation and continued growing. Those plants ended up with faster-growing roots, having more and larger cells. When UPB1 activity was artificially increased, the growth of plant roots slowed.

"It's possible that by manipulating a single gene, you could get a plant with rapid growth," Benfey said. Interestingly, UPB1 appears to act independently of plant hormones that play well-known roles in the balance between cell division and differentiation.

From an engineering perspective, the prospect of enhancing growth by taking a gene away, as opposed to adding one, is particularly appealing, Benfey notes.

"It also suggests that plants are not growing at their full potential," he says. That makes sense, of course, as plants in the real world have to make tradeoffs, for example, between growth and reproduction.

In addition to their potential in biofuels production, the findings might also lead to new ways to produce bigger and stronger plants with the capacity to sequester more earth-warming carbon dioxide from the atmosphere, Benfey says. His startup company, GrassRoots Biotechnology Inc., has acquired the patent for this discovery with its potential in mind. The company's primary goals are the development of next-generation biofuels and the use of root systems for carbon sequestration.


'/>"/>

Contact: Kendall Morgan
kendall.morgan@duke.edu
919-684-2850
Duke University
Source:Eurekalert

Related biology news :

1. Chemical equator discovery will aid pollution mapping
2. Sirtris review of sirtuin therapeutics for diseases of aging in Nature Reviews Drug Discovery
3. Groundbreaking discovery may lead to stronger antibiotics
4. Discovery of natural compounds that could slow blood vessel growth
5. Nanoscopic screening process to speed drug discovery
6. FSU researchers discovery leads to $1.5 million grant, potential new treatment of liver fibrosis
7. New $11 million center to speed production of new compounds for drug discovery
8. Discovery of giant roaming deep sea protist provides new perspective on animal evolution
9. New discovery may enhance MRI scans, lead to portable MRI machines
10. Kidney function discovery sheds light on genetic complexity of disease
11. Discovery of new gene associated with diabetes risk suggests link with body clock
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... 2017 Report Highlights The global ... $8.3 billion in 2016 at a compound annual growth ... Report Includes - An overview of the global market ... data from 2015 and 2016, and projections of compound ... the market on the basis of product type, source, ...
(Date:2/7/2017)... Ind. , Feb. 7, 2017 Zimmer ... leader in musculoskeletal healthcare, will present at the LEERINK ... New York Palace Hotel on Wednesday, February 15, 2017 ... live webcast of the presentation can be accessed at ... replay following the conference via Zimmer Biomet,s Investor Relations ...
(Date:2/6/2017)... Feb. 6, 2017 According to Acuity ... driving border authorities to continue to embrace biometric ... are 2143 Automated Border Control (ABC) eGates and ... at more than 163 ports of entry across ... 2016 achieving a combined CAGR of 37%. APC ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... ... 22, 2017 , ... Pharma and biotech consulting firm ... Operating from Pennside’s Zurich headquarters, Pennside Partners, GmbH, Mr. Perkins brings 14 years ... than a decade with leading market research firm, GfK. He began his pharma ...
(Date:2/21/2017)... , Feb. 21, 2017 Synthetic Biologics, Inc. ... preserve the microbiome to protect and restore the health of patients, ... ended December 31, 2016 on Thursday, March 2, 2017, and to ... The dial-in information for the call is as follows: ... ...
(Date:2/21/2017)... ... February 21, 2017 , ... ... Biopsy System , a fully automated benchtop system for collecting intact circulating tumor ... being launched at the Molecular Medicine Tri Conference (Tri-Con) Annual Meeting 2017 (February ...
(Date:2/21/2017)... (PRWEB) , ... February 21, 2017 , ... The medical ... for their use, in multiple areas of medicine, due to their differentiating characteristics. Stem ... and they have the ability to be induced to become tissue or organic-specific cells ...
Breaking Biology Technology: