Navigation Links
Gene, stem cell therapy only needs to be 50 percent effective to create a healthy heart
Date:10/31/2007

COLUMBIA, Mo. Heart disease is the leading cause of death in the United States and greatly affects the quality and length of life for individuals with specific forms of muscular dystrophy. Recent discoveries have demonstrated that gene and/or stem cell therapy could help a variety of organs in the body, but until now scientists have been unsure whether the heart could benefit from these treatments. According to a new study, recently published in Circulation Research, a journal of the American Heart Association, University of Missouri-Columbia researchers have demonstrated that a muscular dystrophy patient should be able to maintain a normal lifestyle if only 50 percent of the cells of the heart are healthy.

Patients with Duchenne muscular dystrophy and Becker muscular dystrophy have a gene mutation that disrupts the production of a protein known as dystrophin. Absence of this protein starts a chain reaction that eventually leads to muscle cell degeneration and death. Eventually, the damaged muscle tissue is replaced by fibrous, bony or fatty tissue and loses function. In the heart, this leads to severe heart disease and can place severe limitations on individuals afflicted with the disease.

In the past, scientists believed that the only way to have a healthy heart was to rid the heart of all damaged tissue. The heart is considered to be a synchronized organ; therefore, it was believed that the heart needed to maintain 100 percent normal cells in order to stay healthy.

In gene therapy, mutated genes are replaced with healthy genes. In stem cell therapy, diseased cells are replaced with healthy cells. However, in these gene and stem cell therapies, it is not feasible to fix every cell in the heart. Previously, scientists were uncertain whether partial correction could benefit patients.

In our study, we found that a heart with 50 percent normal cells looks like a normal heart, said Dongsheng Duan, an associate professor of molecular microbiology and immunology at the MU School of Medicine. More importantly, it acts like a normal heart. This is the first time that we have concrete evidence that partial gene or cell therapies will be effective for preventing heart disease in a mouse model of muscular dystrophy.

Its important to note that this could improve the quality of life for individuals who have this heart condition, said Brian Bostick, a doctoral student in molecular microbiology and immunology and the first author of the study. Were also looking at this as a possible way to prevent heart disease. If we can treat it early through gene therapy or cell therapy, we know now that it can be very beneficial for patients.

The MU researchers said that this finding would have a positive impact on the ongoing gene and cell therapy studies in animal models of muscular dystrophy as well as in human patients. It also raises the hope of developing effective gene and cell therapies for patients suffering from other heart diseases.


'/>"/>

Contact: Christian Basi
BasiC@missouri.edu
573-882-4430
University of Missouri-Columbia
Source:Eurekalert

Related biology news :

1. Silence the gene, save the cell: RNA interference as promising therapy for ALS
2. Markers of gene, protein, or micro-RNA activity predict outcome in prostate and colorectal cancers
3. Adding Radiation Therapy To Chemotherapy Improves Survival In Patients With High-risk Breast Cancer
4. Columbia research lifts major hurdle to gene therapy for cancer
5. Combination therapy boosts effectiveness of telomere-directed cancer cell death
6. Gene therapy converts dead bone graft to new, living tissue
7. Novel Therapy Tested in Mice Could Chase Away Cat Allergies
8. Study identifies predictors of HIV drug resistance in patients beginning triple therapy
9. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
10. Muscle-targeted gene therapy reverses rare muscular dystrophy in mice
11. Gene Therapy For Parkinsons Disease Moves Forward In Animals
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)... 2016  VoiceIt is excited to announce its ... By working together, VoiceIt and VoicePass will ... VoicePass take slightly different approaches to voice biometrics, ... and usability. ... partnership. "This marketing and technology partnership ...
(Date:5/9/2016)... 2016 Elevay is currently known ... freedom for high net worth professionals seeking travel for ... connected world, there is still no substitute for a ... sealing your deal with a firm handshake. This is ... advantage of citizenship via investment programs like those offered ...
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 A person commits a ... crime scene to track the criminal down. An ... Food and Drug Administration (FDA) uses DNA evidence to track ... Sound far-fetched? It,s not. The FDA has increasingly ... support investigations of foodborne illnesses. Put as simply as possible, ...
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
(Date:6/23/2016)... YORK , June, 23, 2016  The Biodesign ... to envision new ways to harness living systems and ... Modern Art (MoMA) in New York City ... than 130 participating students, showcased projects at MoMA,s Celeste ... Paola Antonelli , MoMA,s senior curator of architecture ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the ... the Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s ... how hardware projects are designed, built and brought to market. , The Design ...
Breaking Biology Technology: