Navigation Links
Gases drawn into smog particles stay there, UCI-led study reveals
Date:2/21/2012

Irvine, Calif., Feb. 21, 2012 Airborne gases get sucked into stubborn smog particles from which they cannot escape, according to findings by UC Irvine and other researchers published today in the Proceedings of the National Academy of Sciences.

The results could explain a problem identified in recent years: Computer models long used by the U.S. Environmental Protection Agency, California air regulators and others significantly underestimate organic aerosols the major component of smog particles. Such pollution blocks views of mountains and has been linked to everything from asthma to heart attacks. It is also the largest unknown in climate change calculations.

"You can't have a lot of confidence in the predicted levels right now," said lead author Veronique Perraud, assistant project scientist to pioneering UCI air chemist Barbara Finlayson-Pitts. "It's extremely important, because if the models do a bad job of predicting particles, we may be underestimating the effects on the public."

An independent expert who reviewed the research for PNAS agreed.

"The conclusions are highly significant," said Purdue University atmospheric chemist Paul Shepson. "This paper should and, I expect, will have a big impact. We've known for nearly a decade that there's a huge difference between what's in the models and what's actually in the air. Thanks to this paper, we have a much better idea of why."

Scientists at UCI, a U.S. Department of Energy laboratory and Portland State University combined pinene, a common ingredient in household cleaners such as Pine Sol and outdoor emissions, with oxides of nitrogen and ozone to mimic smog buildup.

Models used by regulators for decades have assumed that organic aerosols in such pollution form liquid droplets that quickly dissolve potentially unhealthy gases. But the new work found that once gases are sucked into a particle, they get buried deeper and deeper.

"They check in, and they don't check out. They cannot escape. The material does not readily evaporate and may live longer and grow faster in total mass than previously thought," Finlayson-Pitts said. "This is consistent with related studies showing that smog particles may be an extremely viscous tar."

Perraud noted that broader study needs to be done: "The next logical step is to straighten the models out. We need enough follow-up data to do so."

Sophisticated tools made it easier to pinpoint the exact characteristics of chemical compounds in air. The scientists used a 26-foot-long "aerosol flow tube" at the AirUCI unit and a one-of-a-kind, 900-pound instrument known as SPLAT (a single particle laser ablation time-of-flight mass spectrometer) at the Pacific Northwest National Laboratory.


'/>"/>

Contact: Janet Wilson
janethw@uci.edu
949-824-3969
University of California - Irvine
Source:Eurekalert

Related biology news :

1. AgriLife Research adds new instrumentation to measure greenhouse gases
2. DTU is participating in a European network on measurement of greenhouse gases
3. First global portrait of greenhouse gases emerges from pole-to-pole flights
4. Greenhouse gases from forest soils
5. Can biochar help suppress greenhouse gases?
6. MU scientists find new farming method to reduce greenhouse gases, increase farm yields
7. Rising greenhouse gases profoundly impact microscopic marine life
8. New study about Arctic sea-ice, greenhouse gases and polar bear habitat
9. Chemistry for greenhouse gases
10. Charcoal biofilter cleans up fertilizer waste gases
11. ARPA-E funding supports research on carbon dioxide removal from flue gases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... ANGELES , March 30, 2017  On April ... Hack the Genome hackathon at Microsoft,s ... exciting two-day competition will focus on developing health and ... Hack the Genome is the ... been tremendous. The world,s largest companies in the genomics, ...
(Date:3/28/2017)... -- The report "Video Surveillance Market by ... Devices), Software (Video Analytics, VMS), and Service (VSaaS, Installation ... 2022", published by MarketsandMarkets, the market was valued at ... reach USD 75.64 Billion by 2022, at a CAGR ... considered for the study is 2016 and the forecast ...
(Date:3/23/2017)... -- The report "Gesture Recognition and Touchless Sensing Market by Technology ... Forecast to 2022", published by MarketsandMarkets, the market is expected to be worth ... and 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... TX (PRWEB) , ... April 21, 2017 , ... Having ... than a year, Formaspace is pleased to introduce it to top lab design architects ... Formaspace CEO Jeff Turk and VP of Industrial Design and Engineering Greg Casey will ...
(Date:4/21/2017)... ... April 21, 2017 , ... Frederick Innovative Technology Center, Inc. ... technology-based businesses, recently earned a $77,518 grant from the Rural Maryland Council (RMC) ... FITCI is Frederick’s first incubator. A non-profit corporation, FITCI is a public-private partnership ...
(Date:4/20/2017)... Bangor, Maine (PRWEB) , ... April 20, 2017 ... ... members’ contributions to the scientific and clinical research community’s growing body of knowledge ... 20, 2017 in the Gracie Theatre and the adjacent Darling Atrium. During the ...
(Date:4/20/2017)... , ... April 20, 2017 , ... ... of a unique intellectual property (IP) sharing and commercialization model. , The Center ... inventions. A main component of this effort is bringing the IP to the ...
Breaking Biology Technology: