Navigation Links
Fuzzy logic water quality
Date:4/17/2008

A fuzzy logic approach to analyzing water quality could help reduce the number of people in the developing world forced to drink polluted and diseased water for survival. Writing in a forthcoming issue of the International Journal of Environmental Technology and Management, an Inderscience publication, researchers from the University of Malaya, explain how a new approach to water quality assessment uses fuzzy logic to combine disparate problems and provide a more accurate indicator of overall quality.

Rivers are often the main source of freshwater resources for citizens of developing nations. Their social well-being, economics and political development float on the availability and distribution of these freshwater resources. However, in many parts of the world dam construction, irrigation development, and flood mitigation have led to an increased incidence of diseases, such as malaria, Japanese encephalitis, schistosomiasis, lymphatic filariasis and others.

Water quality assessment is an essential part for maintaining good water quality, explained by Ramani Bai Gopinath and Mohamad Rom Tamjis. They explain that a river ecosystem and the quality of the water depend mainly on pH (acidity), levels of dissolved oxygen (DO), biochemical oxygen demand, suspended solids, and the presence of chemicals including chlorides, phosphates, nitrates and sodium.

The researchers have developed a data mining approach to water quality assessment that uses a Fuzzy Inference System (FIS) to extract patterns of river water quality from water sampling data. They have demonstrated the efficacy of this approach using data collected from the river Kerayong of the Klang river basin in West Malaysia.

The principle of "fuzzy" analysis is based on using approximations in the calculations rather than precise values to give a broad and potentially more useful response. Moreover it allows disparate parameters to be combined in a meaningful way even though their values may not be related. Just as apples and oranges are different but all represent the quality of fruitiness, so biochemical oxygen demand and chemical concentrations, for instance, may represent a particular aspect of water quality and so can be combined through fuzzy analysis.

In the present study, the fuzzy analysis of the river Kerayong reveals that it is highly polluted river with a very low water quality index, despite superficial analysis of individual parameters are necessary. This suggests that the quality of life of those relying on the river as a freshwater source could be improved considerably by addressing the individual pollution problems.

"We recommend further studies on data mining capabilities of the Fuzzy Inference System using more than six indicators of water quality," the researchers conclude.


'/>"/>

Contact: Ramani Bai Gopinath
ramanibai@um.edu.my
Inderscience Publishers
Source:Eurekalert

Related biology news :

1. Negligent, attentive mouse mothers show biological differences
2. Ancient DNA: reconstruction of the biological history of Aldaieta necropolis
3. U. Iowa study finds biological link between pain and fatigue
4. NYU dental professor discovers biological clock linking tooth growth to other metabolic processes
5. New mineralogical techniques contribute to prevent national heritage damage
6. Systems biology approach identifies nutrient regulation of biological clock in plants
7. Lensless camera uses X-rays to view nanoscale materials and biological specimens
8. Managing uncertainty important in ecological balance: ASU researcher
9. MIT applies engineering approach to studying biological pathways
10. Core blimey! University of Leicester scientist calls for geological time machine
11. Ecological genetics of freshwater bacteria surveyed
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... Research and Markets has announced the addition of the "Global ... ... at a CAGR of 30.37% during the period 2017-2021. ... based on an in-depth market analysis with inputs from industry experts. ... the coming years. The report also includes a discussion of the ...
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
(Date:3/30/2017)... 2017 The research team of The Hong ... fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery and ... speed and accuracy for use in identification, crime investigation, immigration control, ... ... A research team led ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... (PRWEB) , ... June 22, 2017 , ... ... media network RegMedNet has produced a Spotlight series on ... scholarly reviews and perspectives by leading experts on the unique regulatory challenges of ...
(Date:6/22/2017)... ... June 22, 2017 , ... Charm Sciences, Inc. is pleased to announce that ... to be appropriate as a screening test at dairies and farms for raw commingled ... and the Charm EZ Lite system. These systems are a combination incubator and reader ...
(Date:6/20/2017)... NEWTOWN SQUARE, Pa. , June 20, 2017 /PRNewswire/ ... technology, is pleased to announce the issuance of a ... treating gout or hyperuricemia by the U.S. Patent and ... Biotech Inc., a winner of the Buzz of Bio ... , is akin to developing non-drug approaches to ...
(Date:6/19/2017)... ... 2017 , ... As Vice President, Product Services, Mr. Guinter ... support, and client process and SOP development. , Mr. Guinter brings a wealth ... for service providers and top-tier pharmaceuticals, and as an independent consultant supported a ...
Breaking Biology Technology: