Navigation Links
Fungi have a hand in depleted uranium's environmental fate

Fungi may have an important role to play in the fate of potentially dangerous depleted uranium left in the environment after recent war campaigns, according to a new report in the May 6th issue of Current Biology, a publication of Cell Press.

The researchers found evidence that fungi can lock depleted uranium into a mineral form that may be less likely to find its way into plants, animals, or the water supply.

This work provides yet another example of the incredible properties of microorganisms in effecting transformations of metals and minerals in the natural environment, said Geoffrey Gadd of the University of Dundee in Scotland. Because fungi are perfectly suited as biogeochemical agents, often dominate the biota in polluted soils, and play a major role in the establishment and survival of plants through their association with roots, fungal-based approaches should not be neglected in remediation attempts for metal-polluted soils.

The testing of depleted-uranium ammunition and its recent use in Iraq and the Balkans has led to contamination of the environment with the unstable metal, Gadd explained. Depleted uranium differs from natural uranium in the balance of isotopes it contains. It is the byproduct of uranium enrichment for use in nuclear reactors or nuclear weapons and is valued for its very high density. Although less radioactive than natural uranium, depleted uranium is just as toxic and poses a threat to people.

In the new study, the researchers found that free-living and plant symbiotic (mycorrhizal) fungi can colonize depleted-uranium surfaces and transform the metal into uranyl phosphate minerals.

While they probably still pose some threat, he said, The fungal-produced minerals are capable of long-term uranium retention, so this may help prevent uptake of uranium by plants, animals, and microbes. It might also prevent the spent uranium from leaching out from the soil.

Gadd said that a combination of environmental and biological factors is involved in the process. First, the unstable uranium metal gets coated with a layer of oxides. Moisture in the environment also corrodes the depleted uranium, encouraging fungal colonization and growth. While the fungi grow, they produce acidic substances, which corrode the depleted uranium even further. Some of the substances produced include organic acids that convert the uranium into a form that the fungi can take up or that can interact with other compounds. Ultimately, he said, the interaction of soluble forms of uranium with phosphate leads to the formation of the new uranium minerals that get deposited around the fungal biomass.

We have shown for the first time that fungi can transform metallic uranium into minerals, which are capable of long-term uranium retention, the researchers concluded. This phenomenon could be relevant to the future development of various remediation and revegetation techniques for uranium-polluted soils.


Contact: Cathleen Genova
Cell Press

Related biology news :

1. Fungi can tell us about the origin of sex chromosomes
2. Secrets of cooperation between trees and fungi revealed
3. Mechanisms of plant-fungi symbiosis characterized by DOE Joint Genome Institute
4. Alliance for a Green Revolution in Africa commits 180M to revive farmers depleted soils
5. Environmental fate of nanoparticles depends on properties of water carrying them
6. Stevens Center for Science Writings honors environmental critics with Green Book Award, April 30
7. Environmental enrichment can reduce cocaine use, researchers find
8. Outstanding undergraduates recognized in agronomy, crop, soil, and environmental sciences
9. Harold Mooney wins prestigious Tyler Prize for Environmental Achievement
10. Winners of 2008 Tyler Environmental Prize announced
11. Turtle studies suggest health risks from environmental contaminants
Post Your Comments:
(Date:11/9/2015)... SAN JOSE, Calif. , Nov. 9, 2015 /PRNewswire/ ... of human interface solutions, today announced broader entry into ... of vehicle-specific solutions that match the pace of consumer ... drivers, and biometric sensors are ideal for the automotive ... the vehicle. Europe , ...
(Date:10/29/2015)... 29, 2015   MedNet Solutions , an innovative ... of clinical research, is pleased to announce that it ... (MHTA) as one of only three finalists for a ... Small and Growing" category. The Tekne Awards honor ... superior technology innovation and leadership. iMedNet™ ...
(Date:10/29/2015)... ANN ARBOR, Mich. , Oct. 29, 2015 ... with Eurofins Genomics for U.S. distribution of its ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq ... DNA to enable the preparation of NGS libraries ... in plasma for diagnostic and prognostic applications in ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... November 25, 2015 The ... is a professional and in-depth study on the ...      (Logo: ) , ... industry including definitions, classifications, applications and industry chain ... the international markets including development trends, competitive landscape ...
(Date:11/24/2015)... Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: HALO ... New York on Wednesday, December 2 at ... , president and CEO, will provide a corporate overview. ... at 1:00 p.m. ET/10:00 a.m. PT . ... will provide a corporate overview. --> th Annual ...
(Date:11/24/2015)... RALEIGH, N.C. , Nov. 24, 2015  Clintrax Global, Inc., ... Raleigh, North Carolina , today announced that the company has ... earnings represented a 391% quarter on quarter growth posted for Q3 ... Kingdom and Mexico , with the ... place in December 2015. --> United Kingdom ...
(Date:11/24/2015)... New York , November 24, 2015 ... to a recent market research report released by Transparency ... projected to expand at a CAGR of 17.5% during ... "Non-invasive Prenatal Testing Market - Global Industry Analysis, Size, ... estimates the global non-invasive prenatal testing market to reach ...
Breaking Biology Technology: