Navigation Links
From scourge to saint: E. coli bacteria becomes a factory - to make cheaper, faster pharmaceuticals
Date:3/26/2012

Escherichia coli a bacteria considered the food safety bane of restaurateurs, grocers and consumers is a friend. Cornell University biomolecular engineers have learned to use E. coli to produce sugar-modified proteins for making pharmaceuticals cheaper and faster. (Nature Chemical Biology, March 25, 2012.)

Matthew DeLisa, Cornell associate professor of chemical and biomolecular engineering, and his research team, now have published a novel method for engineering human therapeutic glycoproteins simply and quickly by using E. coli bacteria as a platform. Their methods are now being developed and commercialized through a startup company, Glycobia Inc., which recently took up residence in Cornell's McGovern Family Center for Venture Development in the Life Sciences. While there are no firm plans yet, the professor hopes that within a year, testing this kind of pharmaceutical could be done at the Weill Cornell Medical College in Manhattan.

Glycoproteins are proteins that are modified at specific amino acid "acceptor" sites with complex carbohydrate structures, or oligosaccharides a basic human chemical reaction that's essential to life. That's why specifically designed, genetically engineered glycoproteins are so commonly used as drugs they bind to certain protein receptor sites and, for example, block cancer cells from multiplying. Among glycoproteins used to treat diseases today are monoclonal antibodies and interferons.

Current manufacturing methods rely mainly on costly, time-consuming mammalian culture cells, such as the Chinese Hamster Ovary (CHO) cell line. The process is also susceptible to viral contamination, further driving up production cost. In fact in 2009, another biopharmaceutical company temporarily shut down its plant after such a contamination occurred.

The Cornell research uses a method to assemble a synthetic pathway for the simple and quick production of a glycoprotein that forms the basis of many of today's therapeutic protein drugs, including, for example, the protein GCase, used in a drug that treats Gaucher's disease. To do so, they artificially introduced the machinery of glycosylation the chemical process by which proteins become glycoproteins into E. coli cells, rather than animal cells.

The synthetic pathway they designed, which can be tailored to many amino acid acceptor sites to make different drugs, starts with native enzymes in E. coli. Added to that was a mixture of four enzymes taken from yeast cells, which triggered the biosynthesis of a specific glycan (sugar structure) that resembles the core structure found in virtually all eukaryotic glycans. A fifth enzyme from the bacterium, Campylobacter jejuni, transferred these core glycans to pre-engineered protein acceptor sites, resulting in the desired glycoproteins.

DeLisa and his colleagues are now working to improve their approach that they call "glycans by design" using the enzyme-based protein production method to specifically tailor sugar structures to make many different glycans and glycoproteins.


'/>"/>
Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology news :

1. Seafarers scourge provides hope for biofuel future
2. Disinfectants can make bacteria resistant to treatment
3. H. Pylori bacteria may help prevent some esophageal cancers
4. Scientists discover bacteria that can cause bone infections
5. Waste from gut bacteria helps host control weight, UT Southwestern researchers report
6. Gene against bacterial attack unravelled
7. Predatory bacterial swarm uses rippling motion to reach prey
8. Bacteria manage perfume oil production from grass
9. Nature study demonstrates that bacterial clotting depends on clustering
10. Battling bacteria in the blood: Researchers tackle deadly infections
11. Shifts in soil bacterial populations linked to wetland restoration success
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/13/2017)... , Jan. 13, 2017 Sandata Technologies, ... for the homecare industry, including Electronic Visit Verification™ ... expert, Justin Jugs, as Senior Vice President of ... 15 years of homecare experience to Sandata, where ... strategic plans to align Sandata,s suite of solutions ...
(Date:1/11/2017)... NEW BRUNSWICK, N.J. , Jan. 11, 2017  Michael Johnson, ... from Foundation Venture Capital Group, Inc., has been named to the ... Johnson, 27,  was one of 600 people in 20 fields ... only four percent of the 15,000 applicants were selected. ... He is currently a PhD ...
(Date:1/4/2017)... , Jan. 4, 2017  CES 2017 â€“ ... sensor technology, today announced the launch of two ... systems, the highly-accurate biometric sensor modules that incorporate ... technology, experience and expertise. The two new designs ... specifically for hearables, and Benchmark BW2.0, a 2-LED ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... , Jan. 19, 2017 /PRNewswire -- WuXi ... device open-access capability and technology platform, today announced ... leading biology focused preclinical drug discovery contract research ... will become a wholly-owned subsidiary of WuXi, and ... competences and providing greater services. The acquisition will ...
(Date:1/19/2017)... Calif. , Jan. 19, 2017  ArmaGen, ... Mathias Schmidt , Ph.D., as chief executive officer, ... of directors. Dr. Schmidt brings to ArmaGen more than ... the research and development of biotherapeutics and pharmaceuticals. ... executive with the diverse experience and skillset necessary ...
(Date:1/19/2017)... ... January 19, 2017 , ... DaVita Clinical ... spectrum of drug and device development, and Prism Clinical Research , a ... today announced Verified Clinical Trials (VCT) has been selected by both ...
(Date:1/18/2017)... Portland, OR (PRWEB) , ... January 18, 2017 ... ... modules that provide essential device-to-computer interconnect using USB or PCI Express, announced the ... Altera Cyclone V E FPGA into a compact business-card sized form factor suitable ...
Breaking Biology Technology: