Navigation Links
From scourge to saint: E. coli bacteria becomes a factory - to make cheaper, faster pharmaceuticals

Escherichia coli a bacteria considered the food safety bane of restaurateurs, grocers and consumers is a friend. Cornell University biomolecular engineers have learned to use E. coli to produce sugar-modified proteins for making pharmaceuticals cheaper and faster. (Nature Chemical Biology, March 25, 2012.)

Matthew DeLisa, Cornell associate professor of chemical and biomolecular engineering, and his research team, now have published a novel method for engineering human therapeutic glycoproteins simply and quickly by using E. coli bacteria as a platform. Their methods are now being developed and commercialized through a startup company, Glycobia Inc., which recently took up residence in Cornell's McGovern Family Center for Venture Development in the Life Sciences. While there are no firm plans yet, the professor hopes that within a year, testing this kind of pharmaceutical could be done at the Weill Cornell Medical College in Manhattan.

Glycoproteins are proteins that are modified at specific amino acid "acceptor" sites with complex carbohydrate structures, or oligosaccharides a basic human chemical reaction that's essential to life. That's why specifically designed, genetically engineered glycoproteins are so commonly used as drugs they bind to certain protein receptor sites and, for example, block cancer cells from multiplying. Among glycoproteins used to treat diseases today are monoclonal antibodies and interferons.

Current manufacturing methods rely mainly on costly, time-consuming mammalian culture cells, such as the Chinese Hamster Ovary (CHO) cell line. The process is also susceptible to viral contamination, further driving up production cost. In fact in 2009, another biopharmaceutical company temporarily shut down its plant after such a contamination occurred.

The Cornell research uses a method to assemble a synthetic pathway for the simple and quick production of a glycoprotein that forms the basis of many of today's therapeutic protein drugs, including, for example, the protein GCase, used in a drug that treats Gaucher's disease. To do so, they artificially introduced the machinery of glycosylation the chemical process by which proteins become glycoproteins into E. coli cells, rather than animal cells.

The synthetic pathway they designed, which can be tailored to many amino acid acceptor sites to make different drugs, starts with native enzymes in E. coli. Added to that was a mixture of four enzymes taken from yeast cells, which triggered the biosynthesis of a specific glycan (sugar structure) that resembles the core structure found in virtually all eukaryotic glycans. A fifth enzyme from the bacterium, Campylobacter jejuni, transferred these core glycans to pre-engineered protein acceptor sites, resulting in the desired glycoproteins.

DeLisa and his colleagues are now working to improve their approach that they call "glycans by design" using the enzyme-based protein production method to specifically tailor sugar structures to make many different glycans and glycoproteins.

Contact: Blaine Friedlander
Cornell University

Related biology news :

1. Seafarers scourge provides hope for biofuel future
2. Disinfectants can make bacteria resistant to treatment
3. H. Pylori bacteria may help prevent some esophageal cancers
4. Scientists discover bacteria that can cause bone infections
5. Waste from gut bacteria helps host control weight, UT Southwestern researchers report
6. Gene against bacterial attack unravelled
7. Predatory bacterial swarm uses rippling motion to reach prey
8. Bacteria manage perfume oil production from grass
9. Nature study demonstrates that bacterial clotting depends on clustering
10. Battling bacteria in the blood: Researchers tackle deadly infections
11. Shifts in soil bacterial populations linked to wetland restoration success
Post Your Comments:
(Date:9/28/2015)... 2015 Synaptics Inc. (NASDAQ: SYNA ), ... that Lenovo has selected Synaptics , Natural ID ... latest smartphone, the Vibe P1. The new Vibe ... device and provide swift access to applications and mobile ... ID FS4202 sensor solution utilizes AES256-bit encryption of the ...
(Date:9/24/2015)... , Sept. 24, 2015  EyeLock LLC, a ... showcasing its award winning and latest technology in Booth ... Anaheim, California . EyeLock,s iris authentication ... with unmatched biometric accuracy, making it the most proven ... platform uses video technology to deliver a fast and ...
(Date:9/10/2015)... This report provides detailed descriptions of the sensor types ... types that will dominate in the future. Many product ... technology hype curve in the last five years before ... all of them is the prominence of sensor options ... Sensors collect data about the physical and chemical properties ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... -- PharmaCyte Biotech, Inc. (OTCQB: PMCB) shares closed at $.1035, ... average with 1,308,352 shares being traded. PMCB shares have been ... low of $.072 in September, then bouncing back to current ... due diligence will show investors in PharmaCyte Biotech, Inc. information ... using the link below at no cost. ...
(Date:10/13/2015)... ... October 13, 2015 , ... ... and assessment of organotypic 3D cell culture models, has launched a 14 ... in their patent-pending 3D InSightâ„¢ Human Liver Microtissues. The service streamlines toxicity ...
(Date:10/13/2015)... , ... October 13, 2015 , ... ... President. Steve joins as the Pistoia Alliance continues to drive to increase the ... non-profit Pistoia Alliance is focusing its vision and expanding its work in supporting ...
(Date:10/13/2015)... Oct. 13 2015 Research and Markets( ... & Europe Markets for Bone Morphogenetic Protein Growth Factor ... offering. --> --> ... the formation of bone after a fracture. In nature, ... in the formation of the skeleton. There are twenty ...
Breaking Biology Technology: