Navigation Links
From scourge to saint: E. coli bacteria becomes a factory - to make cheaper, faster pharmaceuticals
Date:3/26/2012

Escherichia coli a bacteria considered the food safety bane of restaurateurs, grocers and consumers is a friend. Cornell University biomolecular engineers have learned to use E. coli to produce sugar-modified proteins for making pharmaceuticals cheaper and faster. (Nature Chemical Biology, March 25, 2012.)

Matthew DeLisa, Cornell associate professor of chemical and biomolecular engineering, and his research team, now have published a novel method for engineering human therapeutic glycoproteins simply and quickly by using E. coli bacteria as a platform. Their methods are now being developed and commercialized through a startup company, Glycobia Inc., which recently took up residence in Cornell's McGovern Family Center for Venture Development in the Life Sciences. While there are no firm plans yet, the professor hopes that within a year, testing this kind of pharmaceutical could be done at the Weill Cornell Medical College in Manhattan.

Glycoproteins are proteins that are modified at specific amino acid "acceptor" sites with complex carbohydrate structures, or oligosaccharides a basic human chemical reaction that's essential to life. That's why specifically designed, genetically engineered glycoproteins are so commonly used as drugs they bind to certain protein receptor sites and, for example, block cancer cells from multiplying. Among glycoproteins used to treat diseases today are monoclonal antibodies and interferons.

Current manufacturing methods rely mainly on costly, time-consuming mammalian culture cells, such as the Chinese Hamster Ovary (CHO) cell line. The process is also susceptible to viral contamination, further driving up production cost. In fact in 2009, another biopharmaceutical company temporarily shut down its plant after such a contamination occurred.

The Cornell research uses a method to assemble a synthetic pathway for the simple and quick production of a glycoprotein that forms the basis of many of today's therapeutic protein drugs, including, for example, the protein GCase, used in a drug that treats Gaucher's disease. To do so, they artificially introduced the machinery of glycosylation the chemical process by which proteins become glycoproteins into E. coli cells, rather than animal cells.

The synthetic pathway they designed, which can be tailored to many amino acid acceptor sites to make different drugs, starts with native enzymes in E. coli. Added to that was a mixture of four enzymes taken from yeast cells, which triggered the biosynthesis of a specific glycan (sugar structure) that resembles the core structure found in virtually all eukaryotic glycans. A fifth enzyme from the bacterium, Campylobacter jejuni, transferred these core glycans to pre-engineered protein acceptor sites, resulting in the desired glycoproteins.

DeLisa and his colleagues are now working to improve their approach that they call "glycans by design" using the enzyme-based protein production method to specifically tailor sugar structures to make many different glycans and glycoproteins.


'/>"/>
Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology news :

1. Seafarers scourge provides hope for biofuel future
2. Disinfectants can make bacteria resistant to treatment
3. H. Pylori bacteria may help prevent some esophageal cancers
4. Scientists discover bacteria that can cause bone infections
5. Waste from gut bacteria helps host control weight, UT Southwestern researchers report
6. Gene against bacterial attack unravelled
7. Predatory bacterial swarm uses rippling motion to reach prey
8. Bacteria manage perfume oil production from grass
9. Nature study demonstrates that bacterial clotting depends on clustering
10. Battling bacteria in the blood: Researchers tackle deadly infections
11. Shifts in soil bacterial populations linked to wetland restoration success
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/23/2017)... -- The general public,s help is being enlisted in what,s thought to be ... on the human body –and are believed to affect health.  ... The Microbiome Immunity Project is the largest study ... gut. The project's goal is to help advance scientific knowledge of the ... ...
(Date:6/14/2017)... IBM ) is introducing several innovative partner startups at VivaTech ... startups and global businesses, taking place in Paris ... will showcase the solutions they have built with IBM Watson ... France is one of the most dynamic ... in the number of startups created between 2012 and 2015*, ...
(Date:4/24/2017)... Janice Kephart , former 9/11 ... Partners, LLP (IdSP) , today issues the following ... March 6, 2017 Executive Order: Protecting the ... be instilled with greater confidence, enabling the reactivation ... applications are suspended by until at least July ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... For the second time ... US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to Washington, D.C. ... US2020. , US2020’s mission is to change the trajectory of STEM education in ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... 13 prestigious awards honoring scientists who have made outstanding contributions to ... symposium during Pittcon 2018, the world’s leading conference and exposition for laboratory science, ...
(Date:10/9/2017)... Antonio, Texas (PRWEB) , ... ... ... new study published on October 5, 2017, in the medical journal, Epilepsia, ... equivalence with the gold standard, video EEG, in detecting generalized tonic-clonic seizures ...
(Date:10/6/2017)... , ... October 06, 2017 , ... ... a lunch discussion and webinar on INSIGhT, the first-ever adaptive clinical trial for ... Dana-Farber Cancer Institute. The event is free and open to the public, but ...
Breaking Biology Technology: