Navigation Links
From scourge to saint: E. coli bacteria becomes a factory - to make cheaper, faster pharmaceuticals
Date:3/26/2012

Escherichia coli a bacteria considered the food safety bane of restaurateurs, grocers and consumers is a friend. Cornell University biomolecular engineers have learned to use E. coli to produce sugar-modified proteins for making pharmaceuticals cheaper and faster. (Nature Chemical Biology, March 25, 2012.)

Matthew DeLisa, Cornell associate professor of chemical and biomolecular engineering, and his research team, now have published a novel method for engineering human therapeutic glycoproteins simply and quickly by using E. coli bacteria as a platform. Their methods are now being developed and commercialized through a startup company, Glycobia Inc., which recently took up residence in Cornell's McGovern Family Center for Venture Development in the Life Sciences. While there are no firm plans yet, the professor hopes that within a year, testing this kind of pharmaceutical could be done at the Weill Cornell Medical College in Manhattan.

Glycoproteins are proteins that are modified at specific amino acid "acceptor" sites with complex carbohydrate structures, or oligosaccharides a basic human chemical reaction that's essential to life. That's why specifically designed, genetically engineered glycoproteins are so commonly used as drugs they bind to certain protein receptor sites and, for example, block cancer cells from multiplying. Among glycoproteins used to treat diseases today are monoclonal antibodies and interferons.

Current manufacturing methods rely mainly on costly, time-consuming mammalian culture cells, such as the Chinese Hamster Ovary (CHO) cell line. The process is also susceptible to viral contamination, further driving up production cost. In fact in 2009, another biopharmaceutical company temporarily shut down its plant after such a contamination occurred.

The Cornell research uses a method to assemble a synthetic pathway for the simple and quick production of a glycoprotein that forms the basis of many of today's therapeutic protein drugs, including, for example, the protein GCase, used in a drug that treats Gaucher's disease. To do so, they artificially introduced the machinery of glycosylation the chemical process by which proteins become glycoproteins into E. coli cells, rather than animal cells.

The synthetic pathway they designed, which can be tailored to many amino acid acceptor sites to make different drugs, starts with native enzymes in E. coli. Added to that was a mixture of four enzymes taken from yeast cells, which triggered the biosynthesis of a specific glycan (sugar structure) that resembles the core structure found in virtually all eukaryotic glycans. A fifth enzyme from the bacterium, Campylobacter jejuni, transferred these core glycans to pre-engineered protein acceptor sites, resulting in the desired glycoproteins.

DeLisa and his colleagues are now working to improve their approach that they call "glycans by design" using the enzyme-based protein production method to specifically tailor sugar structures to make many different glycans and glycoproteins.


'/>"/>
Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology news :

1. Seafarers scourge provides hope for biofuel future
2. Disinfectants can make bacteria resistant to treatment
3. H. Pylori bacteria may help prevent some esophageal cancers
4. Scientists discover bacteria that can cause bone infections
5. Waste from gut bacteria helps host control weight, UT Southwestern researchers report
6. Gene against bacterial attack unravelled
7. Predatory bacterial swarm uses rippling motion to reach prey
8. Bacteria manage perfume oil production from grass
9. Nature study demonstrates that bacterial clotting depends on clustering
10. Battling bacteria in the blood: Researchers tackle deadly infections
11. Shifts in soil bacterial populations linked to wetland restoration success
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/20/2016)... , Jan. 20, 2016  Synaptics Incorporated ... human interface solutions, today announced sampling of S1423, ... for wearables and small screen applications including smartwatches, ... printers. Supporting round and rectangular shapes, as well ... excellent performance with moisture on screen, while wearing ...
(Date:1/15/2016)... , Jan. 15, 2016 Recent publicized breaches ... to find new ways to ensure data security and ... iOS and Android that ties a ... transforming it into a hardware authorization token. Customer service ... their fingerprint on their KodeKey enabled device to verify ...
(Date:1/13/2016)... 13, 2016 ... of the  "India Biometrics Authentication & ... (2015-2020)"  report to their offering.  ... announced the addition of the  "India ... Estimation & Forecast (2015-2020)"  report ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... , Febr. 10, 2016 /PRNewswire/ - BioAmber Inc. (NYSE: ... pleased to announce that Mitsui & Co. Ltd., its ... succinic acid plant, is investing an additional CDN$25 million ... increasing its stake from 30% to 40%.  Mitsui will ... bio-succinic acid produced in Sarnia , ...
(Date:2/10/2016)... Md. , Feb. 10, 2016  The Maryland ... Busch , has announced that University of Maryland School ... PhD, MBA and University of Maryland Medical System President ... of the "Speaker,s Medallion," the highest honor given to ... of Delegates. Dean Reece and Mr. ...
(Date:2/10/2016)... ASAE is introducing a hybrid membership model which will ... of joining or renewing through an organizational purchasing model. ... every employee in any size association or AMC office ... member benefits.   John H. Graham, IV ... allow organizations of any size and their employees to ...
(Date:2/10/2016)... RICHLAND, Wash., Feb. 10, 2016  IsoRay, Inc. (NYSE ... seed brachytherapy and medical radioisotope applications for the treatment ... cancers, today announced its financial results for the second ... December 31, 2015. --> ... second quarter of fiscal 2016, which ended December 31, ...
Breaking Biology Technology: