Navigation Links
From scourge to saint: E. coli bacteria becomes a factory - to make cheaper, faster pharmaceuticals
Date:3/26/2012

Escherichia coli a bacteria considered the food safety bane of restaurateurs, grocers and consumers is a friend. Cornell University biomolecular engineers have learned to use E. coli to produce sugar-modified proteins for making pharmaceuticals cheaper and faster. (Nature Chemical Biology, March 25, 2012.)

Matthew DeLisa, Cornell associate professor of chemical and biomolecular engineering, and his research team, now have published a novel method for engineering human therapeutic glycoproteins simply and quickly by using E. coli bacteria as a platform. Their methods are now being developed and commercialized through a startup company, Glycobia Inc., which recently took up residence in Cornell's McGovern Family Center for Venture Development in the Life Sciences. While there are no firm plans yet, the professor hopes that within a year, testing this kind of pharmaceutical could be done at the Weill Cornell Medical College in Manhattan.

Glycoproteins are proteins that are modified at specific amino acid "acceptor" sites with complex carbohydrate structures, or oligosaccharides a basic human chemical reaction that's essential to life. That's why specifically designed, genetically engineered glycoproteins are so commonly used as drugs they bind to certain protein receptor sites and, for example, block cancer cells from multiplying. Among glycoproteins used to treat diseases today are monoclonal antibodies and interferons.

Current manufacturing methods rely mainly on costly, time-consuming mammalian culture cells, such as the Chinese Hamster Ovary (CHO) cell line. The process is also susceptible to viral contamination, further driving up production cost. In fact in 2009, another biopharmaceutical company temporarily shut down its plant after such a contamination occurred.

The Cornell research uses a method to assemble a synthetic pathway for the simple and quick production of a glycoprotein that forms the basis of many of today's therapeutic protein drugs, including, for example, the protein GCase, used in a drug that treats Gaucher's disease. To do so, they artificially introduced the machinery of glycosylation the chemical process by which proteins become glycoproteins into E. coli cells, rather than animal cells.

The synthetic pathway they designed, which can be tailored to many amino acid acceptor sites to make different drugs, starts with native enzymes in E. coli. Added to that was a mixture of four enzymes taken from yeast cells, which triggered the biosynthesis of a specific glycan (sugar structure) that resembles the core structure found in virtually all eukaryotic glycans. A fifth enzyme from the bacterium, Campylobacter jejuni, transferred these core glycans to pre-engineered protein acceptor sites, resulting in the desired glycoproteins.

DeLisa and his colleagues are now working to improve their approach that they call "glycans by design" using the enzyme-based protein production method to specifically tailor sugar structures to make many different glycans and glycoproteins.


'/>"/>
Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology news :

1. Seafarers scourge provides hope for biofuel future
2. Disinfectants can make bacteria resistant to treatment
3. H. Pylori bacteria may help prevent some esophageal cancers
4. Scientists discover bacteria that can cause bone infections
5. Waste from gut bacteria helps host control weight, UT Southwestern researchers report
6. Gene against bacterial attack unravelled
7. Predatory bacterial swarm uses rippling motion to reach prey
8. Bacteria manage perfume oil production from grass
9. Nature study demonstrates that bacterial clotting depends on clustering
10. Battling bacteria in the blood: Researchers tackle deadly infections
11. Shifts in soil bacterial populations linked to wetland restoration success
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/20/2016)... DALLAS , June 20, 2016 ... criminal justice technology solutions for public safety, investigation, ... by the prisons involved, it has secured the ... Corrections (DOC) facilities for Managed Access Systems (MAS) ... (4) additional facilities to be installed by October, ...
(Date:6/7/2016)... -- Syngrafii Inc. and San Antonio Credit Union (SACU) ... Syngrafii,s patented LongPen™ eSignature "Wet" solution into SACU,s ... in greater convenience for SACU members and operational ... document workflow and compliance requirements. Logo ... Highlights: ...
(Date:6/1/2016)... NEW YORK , June 1, 2016 ... Biometric Technology in Election Administration and Criminal Identification to ... According to a recently released TechSci Research report, " ... Sector, By Region, Competition Forecast and Opportunities, 2011 - ... $ 24.8 billion by 2021, on account of growing ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... June 24, 2016  Regular discussions on a range of ... between the two entities said Poloz. Speaking at ... Ottawa , he pointed to the country,s inflation target, ... government. "In certain ... institutions have common economic goals, why not sit down and ...
(Date:6/24/2016)... ... ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension of ... higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... of the cuvette holder. , FireflySci has developed several Agilent flow cell product ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced ... this eBook by providing practical tips, tools, and strategies for clinical researchers. , ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
Breaking Biology Technology: