Navigation Links
From a bucket of seawater, new understanding of the ocean
Date:5/6/2011

NEW BRUNSWICK, N.J. From a bucket of seawater, scientists have unlocked information that may lead to deeper understanding of organisms as different as coral reefs and human disease. By analyzing genomes of a tiny, single-celled marine animal, they have demonstrated a possible way to address diverse questions such as how diseased cells differ from neighboring healthy cells and what it is about some Antarctic algae that allows them to live in warming waters while other algae die out.

Debashish Bhattacharya, professor of ecology, evolution and natural resources in Rutgers' School of Environmental and Biological Sciences, and Ramunas Stepanauskas and Hwan Su Yoon of the Bigelow Laboratory of Ocean Sciences, have published their results in the journal Science. They used sophisticated new technologies to sequence the genomes of individual picobilophytes, tiny microbes first discovered in 2007. At less than 10 micrometers across, they are some of the tiniest marine animals known to science.

"If we can peer inside the genome of a single cell and reconstruct its history, we can do that for many cells and figure out their interactions with other cells in the environment," Bhattacharya said. For example, why do different cancer cells from the same tumor grow at different rates? Their genomes might contain the answer, and the answer might lead to more effective treatment strategies.

"Our results demonstrate how single cell genomics opens a window into the natural drama that constantly takes place in each drop of seawater a drama featuring predation, viral infections, and the divergent fate of close relatives," Stepanauskas said. "The outcomes of this drama have profound effects on the lives of larger marine organisms, such as commercially valuable fish."

Bhattacharya and Oscar Schofield, professor of marine science, are now working to apply these techniques to Antarctic algae. Some species traditionally found along the Western Antarctic

Peninsula are dying off as the water warms, and others, not seen before there, are moving in. If Bhattacharya and Schofield can sequence the genomes of those algae cell by cell, as he and

Stepanauskas have done with picobilophytes, they might learn much more about how climate change has affected the ecosystem in that region. Bigelow Laboratory's Single Cell Genomics Center, established by Stepanauskas and his colleagues, has analyzed more than150,000 individual microbial cells, shedding new light on the invisible majority of our planets biological diversity.

When picobilophytes were discovered in 2007, scientists believed they were photosynthetic that is, that, like green plants, they converted carbon dioxide into food, using energy from sunlight. But these tiny cells have been impossible to culture in the laboratory and this may have been because they were starving, deprived of their natural food sources.

For this project, the scientists hauled 50 milliliters (a handful) of seawater out of Boothbay Harbor in Maine, the home of the Bigelow Laboratory. They used a technique called fluorescence activated cell sorting to separate photosynthetic from non-photosynthetic (heterotrophic) cells. They were surprised to find that picobilophytes lacked chlorophyll. They sequenced the genomes of three picobilophytes and were excited to find, in one of them, a new virus, whose circular genome they were able to reconstruct. They were also able to identify and sequence the DNA of creatures the picobilophytes had presumably eaten.

For a marine biologist like Bhattacharya, however, the immediate prospects in his own field hold the most promise. "There is a lot of uncharted biodiversity on our planet that we can't get a hold of because we can't cultivate the cells," he said. "Now, if you can reconstruct the nuclear genomes of individual cells in a sample of seawater, you can begin to infer not only the numbers and kinds of organisms that inhabit a particular ecosystem but also the functions of all the genes in their individual genomes."


'/>"/>

Contact: Robin Lally
rlally@ur.rutgers.edu
732-932-7084 x652
Rutgers University
Source:Eurekalert

Related biology news :

1. Measuring snow with a bucket, a windmill, and the sun?
2. ISU research leads to understanding of how crops deal with stress -- yields biggest enemy
3. TGen findings contribute to understanding of diabetic kidney disease
4. A better understanding of the aging immune system
5. Stem cells may be key to understanding the origins of colon cancer and detecting relapse
6. Pig model of cystic fibrosis improves understanding of disease
7. Monash scientists uncover a new understanding of male puberty
8. Immunologist J. John Cohen receives the 2010 AAAS Public Understanding of Science and Technology Award
9. Massive Daphnia genome leads to understanding gene-environment interactions
10. Research uncovers key to understanding cause of lupus
11. Extracting cellular engines may aid in understanding mitochondrial diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/18/2017)...  Socionext Inc., a global expert in SoC-based imaging and computing ... M820, which features the company,s hybrid codec technology. A demonstration utilizing ... Inc., will be showcased during the upcoming Medtec Japan at Tokyo ... Las Vegas Convention Center April 24-27. ... Click here for an image ...
(Date:4/11/2017)... -- Research and Markets has announced the addition of ... offering. ... market to grow at a CAGR of 30.37% during the period ... has been prepared based on an in-depth market analysis with inputs ... growth prospects over the coming years. The report also includes a ...
(Date:4/5/2017)... 5, 2017 Today HYPR Corp. , ... server component of the HYPR platform is officially ... end-to-end security architecture that empowers biometric authentication across Fortune ... already secured over 15 million users across the financial ... connected home product suites and physical access represent a ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
(Date:10/9/2017)... Charlotte, N.C. (PRWEB) , ... October 09, 2017 , ... ... Purple announced Dr. Christopher Stubbs, a professor in Harvard University’s Departments of Physics and ... Dr. Stubbs was a member of the winning team for the 2015 Breakthrough Prize ...
(Date:10/9/2017)... San Antonio, Texas (PRWEB) , ... ... ... a new study published on October 5, 2017, in the medical journal, ... demonstrated equivalence with the gold standard, video EEG, in detecting generalized tonic-clonic ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... ProxiMeta™ Hi-C metagenome deconvolution product, featuring the first commercially available Hi-C kit. ... to perform Hi-C metagenome deconvolution using their own facilities, supplementing the company’s ...
Breaking Biology Technology: