Navigation Links
Friendly to a fault, yet tense: Personality traits traced in brain

A personality profile marked by overly gregarious yet anxious behavior is rooted in abnormal development of a circuit hub buried deep in the front center of the brain, say scientists at the National Institutes of Health. They used three different types of brain imaging to pinpoint the suspect brain area in people with Williams syndrome, a rare genetic disorder characterized by these behaviors. Matching the scans to scores on a personality rating scale revealed that the more an individual with Williams syndrome showed these personality/temperament traits, the more abnormalities there were in the brain structure, called the insula.

"Scans of the brain's tissue composition, wiring, and activity produced converging evidence of genetically-caused abnormalities in the structure and function of the front part of the insula and in its connectivity to other brain areas in the circuit," explained Karen Berman, M.D., of the NIH's National Institute of Mental Health (NIMH).

Berman, Drs. Mbemda Jabbi, Shane Kippenham, and colleagues, report on their imaging study in Williams syndrome online in the journal Proceedings of the National Academy of Sciences.

"This line of research offers insight into how genes help to shape brain circuitry that regulates complex behaviors such as the way a person responds to others and thus holds promise for unraveling brain mechanisms in other disorders of social behavior," said NIMH Director Thomas R. Insel, M.D.

Williams syndrome is caused by the deletion of some 28 genes, many involved in brain development and behavior, in a particular section of chromosome 7. Among deficits characteristic of the syndrome are a lack of visual-spatial ability such as is required to assemble a puzzle and a tendency to be overly-friendly with people, while overly anxious about non-social matters, such as spiders or heights. Many people with the disorder are also mentally challenged and learning disabled, but some have normal IQs.

Previous imaging studies by the NIMH researchers found abnormal tracts of the neuronal fibers that conduct long-distance communications between brain regions -- likely resulting from neurons migrating to the wrong destinations during early development.

Evidence suggests that genes influence our temperament and the development of mental disorders via effects on brain circuits that regulate behavior. Yet direct demonstration of this in humans has proven elusive. Since the genetic basis of Williams syndrome is well known, it offers a unique opportunity to explore such effects with neuroimaging, reasoned the researchers.

Although the insula had not previously been studied in such detail in the disorder, it was known to be related to brain circuitry and certain behaviors, such as empathy, which is also highly prominent in the disorder. Berman and colleagues hypothesized that the insula's anatomy, function and connectivity would predict patients' scores for Williams syndrome-associated traits on personality rating scales. Fourteen intellectually normal Williams syndrome participants and 23 healthy controls participated in the study.

Magnetic resonance imaging (MRI) revealed that patients had decreased gray matter the brain's working tissue in the bottom front of the insula, which integrates mood and thinking. By contrast, they had increased gray matter in the top front part of the insula, which has been linked to social/emotional processes.

Diffusion tensor imaging, which by detecting the flow of water in nerve fibers can identify and measure the connections between brain areas, showed reduced white matter the brain's long-distance wiring between thinking and emotion hubs.

Tracking radioactively-tagged water in order to measure brain blood flow at rest, via positron emission tomography (PET), exposed activity aberrations consistent with the MRI abnormalities. The PET scans also revealed altered functional coupling between the front of the insula and key structures involved in thinking, mood and fear processing. These structural and functional abnormalities in the front of the insula correlated with the Williams syndrome personality profile.

"Our findings illustrate how brain systems translate genetic vulnerability into behavioral traits" explained Berman.


Contact: Jules Asher
NIH/National Institute of Mental Health

Related biology news :

1. MU scientists go green with gold, distribute environmentally friendly nanoparticles
2. Queens scientists discover eco-friendly wood dissolution
3. Some aspects of birding not always environmentally friendly, professor says
4. In search of wildlife-friendly biofuels
5. Ants are friendly to some trees, but not others
6. Pumping up the heat for a climate-friendly future
7. Innovotech receives funding to advance environmentally friendly agricultural crop protection product
8. NTU gets GreenLite for Singapores first truly eco-friendly bus
9. Mother Nature to provide an environmentally friendly method for reducing mosquitoes
10. Scientists develop sustainable, environmentally friendly potting medium
11. New user-friendly resource connects human genes to biological functions
Post Your Comments:
Related Image:
Friendly to a fault, yet tense: Personality traits traced in brain
(Date:5/6/2017)... SINGAPORE , May 5, 2017 ... has just announced a new breakthrough in biometric ... that exploits quantum mechanical properties to perform ... new smart semiconductor material created by Ram Group ... across finance, entertainment, transportation, supply chains and security. ...
(Date:4/13/2017)... 2017 UBM,s Advanced Design and Manufacturing event ... emerging and evolving technology through its 3D Printing and ... alongside the expo portion of the event and feature ... focused on trending topics within 3D printing and smart ... event will take place June 13-15, 2017 at the Jacob ...
(Date:4/11/2017)... April 11, 2017 NXT-ID, Inc. (NASDAQ: ... company, announces the appointment of independent Directors Mr. Robin ... its Board of Directors, furthering the company,s corporate governance and ... Gino Pereira ... look forward to their guidance and benefiting from their considerable ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... The ... endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. ... is transformative for performing systematic gain-of-function studies. , This complement to loss-of-function ...
(Date:10/11/2017)... Md. (PRWEB) , ... October 11, 2017 , ... ... digital pathology, announced today it will be hosting a Webinar titled, “Pathology is ... Advanced Pathology Associates , on digital pathology adoption best practices and how Proscia ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving air ... living in larger cities are affected by air pollution related diseases. , That is ... globally - decided to take action. , “I knew I had to take action ...
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building and cooking events ... announced today. The bold new look is part of a transformation to increase ... a significant growth period. , It will also expand its service offering from its ...
Breaking Biology Technology: